声明:仅学习使用~
前情回顾:
2023.1.25,周三【图神经网络 学习记录9】图网络的分类,异构图—注意力机制网络:节点级别的attention,语义级别的attention
2023.1.23,周一【图神经网络 学习记录8】访问PyG官网,查看data属性。使用PyG实现GCN、GraphSAGE、GAT模型。
2023.1.24,周二【图神经网络 学习记录7】GraphSAGE 练习,PyG学习(部署在之前已经介绍过)
2023.1.20,周五【图神经网络 学习记录6】GAT模型练习,含遇到的问题 以及 解决
2023.1.19,周四【图神经网络 学习记录5】GraphSAGE模型:采样、聚合函数、GraphSAGE minibatch、GraphSAGE Embedding | GAT模型:多头注意力机制
2023.1.18,周三【图神经网络 学习记录4】通过新建Anaconda环境,尝试解决昨天的问题(未)(conda基础命令回顾) || GCN核心公式讲解,两层GCN || GCN的通俗理解
2023.1.17,周二【图神经网络 学习记录3】Graph Embedding算法应用,初始“华为云——知识图谱”
2023.1.16,周一【图神经网络 学习记录2】Graph Embedding 之 DeepWalk算法 解析 || 知识图谱嵌入技术:以TransE模型为例
2023.1.15,周日【图神经网络 学习记录1】图的基本概念:如何计算度中心性、特征向量中心性、中介中心性、连接中心性 | 网页排序算法之PageRank:求PageRank值、西游记人物节点重要度
一、DGL库安装
1.1 查看本地的CUDA版本
win+R cmd 进入终端:输入 nvcc --version 并回车

查看CUDA版本 和Python 版本 应该 对应的DGL版本:点我就好

1.2 直接下载安装DGL库
如果想直接下载安装DGL,可以去DGL官网:

进入Anaconda Promp
DGL与HAN模型实践:安装、部署与图卷积网络训练
本文记录了基于PyTorch的DGL库安装过程,包括遇到的问题和解决方案,以及DGL的图创建、节点边赋值和图卷积网络(GCN)的实现。同时,文中还介绍了HAN模型的初步练习,包括模型运行时的错误处理。此外,提供了数据预处理、模型训练与可视化的步骤。
订阅专栏 解锁全文
469

被折叠的 条评论
为什么被折叠?



