自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(36)
  • 收藏
  • 关注

原创 JDK 9 10 11 12 Tomcat报500错误

@R星校长JDK12 环境下报错问题描述:JDK12 环境下将报表工程部署到 Tomcat 服务器端,会报 500 错误。如下图所示:解决方案:JDK9 及之后的版本是没有 tools.jar 的,安装低版本 JDK 部署即可。

2020-12-31 16:42:09 8

原创 FineReport Tomcat默认编码不是UTF-8,如何修改

@R星校长点击跳转至Tomcat7 编码修改为 UTF-8Tomcat7 及之前的版本,URIEncoding 默认值是 ISO8859-1;而从 Tomcat8.0 开始,URIEncoding 默认值不再是 ISO8859-1,而变成了 UTF-8。因此报表工程部署在 Tomcat7 时,会导致平台工程中搜索有 bug,后台中文被转码,搜索不到中文内容等问题。需要修改%Tomcat_HOME%\conf目录下的 server.xml 文件,将代码中的编码修改为 UTF-8 格式,如下图所示.

2020-12-31 14:57:26 15

原创 FineReport服务器部署包

@R星校长服务器部署包下载1)点击跳转至服务器部署包下载地址:服务器部署包 。服务器部署包解压缩将下载好的部署包解压至某个目录下,例如D:\tomcat-win64。启动 Tomcat 服务器进入文件解压目录%Tomcat_HOME%/tomcat-win64/bin下,根据不同系统,执行startup.bat或者startup.sh即可启动 Tomcat 服务器。以 Windows 系统为例,双击startup.bat,启动 Tomcat 服务器。访问数据决策系统访问数据决策系统.

2020-12-31 14:27:54 81

原创 Pandas数据预处理(二)

@R星校长第2关:清洗数据任务描述本关任务:读取数据,输出删除NA值以及重复值之后的结果,并重置索引列。相关知识数据清洗的目的有两个,第一是通过清洗让数据可用。第二是让数据变的更适合进行后续的分析工作。换句话说就是有”脏”数据要洗,干净的数据也要洗。缺失值处理检查缺失值Pandas提供了isnull()和notnull()两个函数来检测数据中的NaN值。Series和DataFrame对象都可以使用。df = pd.DataFrame({ "one": [1, 2, np.nan.

2020-12-24 00:11:28 43

原创 分组查询and复杂查询(笔记)

@R星校长原文跳转分组查询查询各科成绩最高和最低的分, 以如下的形式显示:课程号,最高分,最低分/*分析思路select 查询结果 [课程ID:是课程号的别名,最高分:max(成绩) ,最低分:min(成绩)]from 从哪张表中查找数据 [成绩表score]where 查询条件 [没有]group by 分组 [各科成绩:也就是每门课程的成绩,需要按课程号分组];*/select 课程号,max(成绩) as 最高分,min(成绩) as 最低分from scoregroup.

2020-12-23 23:43:08 17

原创 Pandas数据预处理(一)

@R星校长第1关:合并数据Pandas提供了一套合并数据集操作的方法,本实训主要介绍merge()、concat()和combine_first()实现。merge()merge()可根据一个或者多个键将不同的DataFrame连接在一起,类似于SQL数据库中的合并操作。参数名说明left拼接左侧DataFrame对象right拼接右侧DataFrame对象on列(名称)连接,必须在左和右DataFrame对象中存在(找到)。left_on左侧Dat.

2020-12-22 23:01:29 39

原创 Pandas初体验(八)

@R星校长第8关:层次化索引层次化索引层次化索引(hierarchical indexing)是pandas的一项重要功能,它使我们能在一个轴上拥有多个(两个以上)索引级别。请看以下例子:In[1]:data = Series(np.random.randn(10), index = [['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd', 'd' ],[1,2,3,1,2,3,1,2,2,3]])In[2]:dataOut[2]:a 1 0.16.

2020-12-21 23:53:27 24

原创 Pandas初体验(七)

@R星校长第7关:数据的基本操作——去重duplicated()DataFrame的duplicated方法返回一个布尔型Series,表示各行是否是重复行。具体用法如下:In[1]: df = DataFrame({'k1':['one']*3 + ['two']*4, 'k2':[1,1,2,3,3,4,4]})In[2]: dfOut[2]: k1 k20 one 11 one 12 one 23 two 34 two 35 two.

2020-12-21 00:11:43 31

原创 Pandas初体验(六)

@R星校长第6关:数据的基本操作——算术运算算术运算(+,-,*,/)DataFrame中的算术运算是df中对应位置的元素的算术运算,如果没有共同的元素,则用NaN代替。In[5]: df1 = DataFrame(np.arange(12.).reshape((3,4)),columns=list('abcd'))In[6]: df2 = DataFrame(np.arange(20.).reshape((4,5)),columns=list('abcde'))In[9]: df1+df2.

2020-12-20 23:19:23 46

原创 Pandas初体验(五)

@R星校长第5关:数据的基本操作——删除删除指定轴上的项即删除Series的元素或DataFrame的某一行(列)的意思,我们可以通过对象的drop(labels, axis=0)方法实现此功能。删除Series的一个元素:In[11]: ser = Series([4.5,7.2,-5.3,3.6], index=['d','b','a','c'])In[13]: ser.drop('c')Out[13]: d 4.5b 7.2a -5.3dtype: float6.

2020-12-20 23:06:50 31

原创 Pandas初体验(四)

@R星校长第4关:数据的基本操作——排序本关我们将学习处理Series和DataFrame中的数据的基本手段,我们将会探讨Pandas最为重要的一些功能。对索引进行排序Series用sort_index()按索引排序,sort_values()按值排序;DataFrame也是用sort_index()和sort_values()。In[73]: obj = Series(range(4), index=['d','a','b','c'])In[74]: obj.sort_index() .

2020-12-20 22:51:13 33 1

原创 Pandas初体验(三)

@R星校长第3关:读取CSV格式数据读取CSV# Reading a csv into Pandas.# 如果数据集中有中文的话,最好在里面加上 encoding = 'gbk' ,以避免乱码问题。后面的导出数据的时候也一样。df = pd.read_csv('uk_rain_2014.csv', header=0)这里我们从csv文件里导入了数据,并储存在DataFrame中。这一步非常简单,你只需要调用read_csv然后将文件的路径传进去就行了。header关键字告诉Pandas哪些是.

2020-12-19 16:55:03 38 1

原创 Pandas初体验(二)

@R星校长第2关:了解数据处理对象-DataFrameDataFrame是一个表格型的数据结构,是以一个或多个二维块存放的数据表格(层次化索引),DataFrame既有行索引还有列索引,它有一组有序的列,每列既可以是不同类型(数值、字符串、布尔型)的数据,或者可以看做由Series组成的字典。DataFrame创建:dictionary = {‘state’:[‘0hio’,’0hio’,’0hio’,’Nevada’,’Nevada’], ‘year’:[2000,2001,2002,200.

2020-12-19 00:40:07 27 2

原创 Pandas初体验(一)

@R星校长第1关:了解数据处理对象–SeriesPandas是为了解决数据分析任务而创建的,纳入了大量的库和标准数据模型,提供了高效地操作大型数据集所需的工具。对于Pandas包,在Python中常见的导入方法如下:from pandas import Series,DataFrameimport pandas as pdPandas中的数据结构Series:一维数组,类似于Python中的基本数据结构list,区别是Series只允许存储相同的数据类型,这样可以更有效的使用内存,提高运.

2020-12-18 13:29:13 42

原创 NumPy数组的高级操作(五)

@R星校长第5关:线性代数numpy的线性代数线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,一般我们使用*对两个二维数组相乘得到的是一个元素级的积,而不是一个矩阵点积。因此numpy提供了线性代数函数库linalg,该库包含了线性代数所需的所有功能。常用的numpy.linalg函数:函数说明dot矩阵乘法vdot两个向量的点积det计算矩阵的行列式inv计算方阵的逆svd计算奇异值分解(SVD).

2020-12-17 00:18:33 28

原创 NumPy数组的高级操作(四)

@R星校长第4关:广播机制什么是广播两个ndarray对象的相加、相减以及相乘都是对应元素之间的操作。import numpy as npx = np.array([[2,2,3],[1,2,3]])y = np.array([[1,1,3],[2,2,4]])print(x*y) '''输入结果如下:[[ 2 2 9] [ 2 4 12]]'''当两个ndarray对象的形状并不相同的时候,我们可以通过扩展数组的方法来实现相加、相减、相乘等操作,这种机制叫做广播(br.

2020-12-16 00:40:35 33

原创 NumPy数组的高级操作(三)

@R星校长第3关:花式索引与布尔索引花式索引花式索引(Fancy Indexing)是NumPy用来描述使用整型数组(这里的数组,可以是NumPy的数组,也可以是python自带的list)作为索引的术语,其意义是根据索引数组的值作为目标数组的某个轴的下标来取值。使用一维整型数组作为索引,如果被索引数组(ndarray)是一维数组,那么索引的结果就是对应位置的元素;如果被索引数组(ndarray)是二维数组,那么就是对应下标的行。如下图所示:示例代码如下:import numpy as np.

2020-12-14 22:27:55 31

原创 NumPy数组的高级操作(二)

@R星校长第2关:比较、掩码和布尔逻辑比较在许多情况下,数据集可能不完整或因无效数据的存在而受到污染。我们要基于某些准则来抽取、修改、计数或对一个数组中的值进行其他操作时,就需要掩码了。接下来将学习如何用 布尔掩码 来查看和操作数组中的值。和算术运算符一样,比较运算符在numpy中也是通过通用函数来实现的。比较运算符和其对应的通用函数如下:比较运算符通用函数==np.equal!=np.not_equal<np.less<=np.less.

2020-12-14 00:27:00 27

原创 NumPy数组的高级操作(一)

@R星校长stackstack的意思是堆叠的意思,所谓的堆叠就是将两个ndarray对象堆叠在一起组合成一个新的ndarray对象。根据堆叠的方向不同分为hstack以及vstack两种。hstack假如你是某公司的HR,需要记录公司员工的一些基本信息。可能你现在已经记录了如下信息:工号姓名出生年月联系电话1张三1988.12133233323332李四1987.2159666666663王五1990.1137777777774周六.

2020-12-12 21:52:34 34

原创 NumPy基础及取值操作(五)

@R星校长第5关:索引与切片索引ndarray的索引其实和python的list的索引极为相似。元素的索引从0开始。代码如下:import numpy as np# a中有4个元素,那么这些元素的索引分别为0,1,2,3a = np.array([2, 15, 3, 7])# 打印第2个元素# 索引1表示的是a中的第2个元素# 结果为15print(a[1])# b是个2行3列的二维数组b = np.array([[1, 2, 3], [4, 5, 6]])# 打印b中的第1行.

2020-12-11 22:28:14 38

原创 NumPy基础及取值操作(四)

@R星校长第4关:随机数生成简单随机数生成NumPy的random模块下提供了许多生成随机数的函数,如果对于随机数的概率分布没有什么要求,则通常可以使用random_sample、choice、randint等函数来实现生成随机数的功能。random_samplerandom_sample用于生成区间为[0, 1]的随机数,需要填写的参数size表示生成的随机数的形状,比如size=[2, 3]那么则会生成一个2行3列的ndarray,并用随机值填充。示例代码如下:import numpy a.

2020-12-11 00:23:39 92

原创 NumPy基础及取值操作(三)

@R星校长第3关:基础操作算术运算如果想要对ndarray对象中的元素做elementwise(逐个元素地)的算术运算非常简单,加减乘除即可。代码如下:import numpy as npa = np.array([0, 1, 2, 3])# a中的所有元素都加2,结果为[2, 3, 4, 5]b = a + 2# a中的所有元素都减2,结果为[-2, -1, 0, 1]c = a - 2# a中的所有元素都乘以2,结果为[0, 2, 4, 6]d = a * 2# a中.

2020-12-10 00:35:41 65

原创 NumPy基础及取值操作(二)

@R星校长第2关:形状操作怎样改变ndarray对象的形状改变形状上一关介绍了怎样实例化ndarray对象,比如想实例化一个3行4列的二维数组,并且数组中的值全为0。就可能会写如下代码:import numpy as npa = np.zeros((3, 4))那如果想把a变成4行3列的二维数组,怎么办呢?比较聪明的同学可能会想到这样的代码:import numpy as npa = np.zeros((3, 4))# 直接修改shape属性a.shape = [4, 3]最后.

2020-12-08 23:07:28 32

原创 2020-12-08 今天我宣布,我的博客要开始转型,专注于人工智能的数据分支,选择数据工程师到大数据工程师的进阶路线

@R星校长今日决定受到吴军一篇文章影响,《硅谷来信第三季》第037封信 | 凭一己之力能做到多少事?李希霍芬的大部分旅行发生在他23岁大学毕业时到38岁这之间的15年,这中间他很少有机会回到德国的家。这一段时间应该讲是人生最美好、最年富力强的时间,李希霍芬用这15年做了最有意义的事情。如果你是一个大学生,或者你的孩子在读大学,你可以了解一下李希霍芬的故事。人未必需要在刚从学校毕业的时候,就把自己的目标定在尽快有房有车上,应该考虑去做一些对自己和世界都更有意义的事情,否则人生的格局就太小了。人要是真.

2020-12-08 22:01:42 21

原创 NumPy基础及取值操作(一)

@R星校长怎样安装NumPy本地想要安装NumPy其实非常简单,进入命令行,输入pip install numpy即可。什么是ndarray对象NumPy为什么能够受到各个数据科学从业人员的青睐与追捧,其实很大程度上是因为NumPy在向量计算方面做了很多优化,接口也非常友好(总之就是用起来很爽)。而这些其实都是在围绕着NumPy的一个核心数据结构ndarray。ndarray的全称是N-Dimension Arrary,字面意义上其实已经表明了一个ndarray对象就是一个N维数组。但要注意的是.

2020-12-08 00:14:50 171

原创 SQL Server 高级查询-COUNT()(二)

@R星校长返回内容(行)的个数COUNT() 函数的作用就像它的函数名一样能让大家一目了然,没错,它就是用来计数的。COUNT() 函数有两种使用方法:使用 COUNT(*) 能对整张表的内容(行)进行计数,不管内容(行)是有值还是空值。使用 COUNT(字段) 能对某一字段的内容(行)进行计数,但是会忽略 NULL 值。语法规则为:1. SELECT COUNT(*) FROM 表名 2. SELECT COUNT(字段名) FROM 表名 举个例子我们想从表.

2020-12-06 23:50:21 100

原创 2020-12-05星期六 (本周复盘)

@R星校长这一周先做一个复盘,从周一见客户开始,我做对的地方,我准时且提前到了约定地点,给人一种靠谱的感觉,这一次没有发生任何意外情况。我约定时间是9:40门口见,我9.07就到达了门口提前了近30分钟,这三十分钟我也没闲着,拿着笔记本记录自己今日要注意的事项,首要的一点就是少说话,多听多看,先学和我组队来的同事的做法,自己仔细复盘。这周让我觉得压力很大的事情:就是还没有学会做项目,开局非常困难,谈好的这个项目第二天,礼拜二,就交到我的手上,自己对于工作上碰到的问题没有及时去问同事。导致周二,周三,.

2020-12-06 23:06:23 34

原创 SQL Server 高级查询-AVG()(一)

@R星校长第1关:AVG()函数的使用返回某一字段的平均值AVG()函数通过计算某字段(列)内容(行)的个数和它们的数值之和来返回某一字段的平均值。语法规则为:SELECT AVG(column_name) FROM table_name 举个例子我们想从表 Customers中,检索到所有消费者消费金额的平均值。表 Customers的内容如下表所示:输入:SELECT AVG(cost) as avg_costFROM Customers输出:avg_cos.

2020-12-05 22:22:24 89

原创 SQL语句的执行顺序是什么样的?(把之前的所有语法集中到一个句子中)

@R星校长SELECT DISTINCT column, AGG_FUNC(column_or_expression), …FROM mytable JOIN another_table ON mytable.column = another_table.column WHERE constraint_expression GROUP BY column HAVING constraint_expression ORDER BY column ASC.

2020-12-05 00:51:40 81

原创 SQL Server 通配符[]查询(三)

@R星校长第3关:通配符[]的使用如何使用通配符 [] 模糊匹配数据内容通配符[]是个中括号,一看就知道里面是应该放点什么内容,放点什么呢?它又有什么作用呢?[]用于将一组字符囊括在内,这一组字符之间是或的关系,而通配符[]出现的位置也严格匹配于括号中出现的字符在整个字符串中的位置。是不是有点抽象?一会儿我们举个例子你就明白了,先来看看语法吧。语法规则为:SELECT 字段名 FROM 表名 WHERE 字段名 LIKE '[数据]' 举个例子我们想从表Customers中.

2020-12-03 23:50:36 21

原创 SQL Server 通配符_查询(二)

@R星校长第2关:通配符_的使用如何使用通配符_模糊匹配数据内容。另一个很实用的通配符是下划线 _ ,它的使用规则与 % 类似,唯一与 %不同的是:% 能匹配多个字符,而_ 只能匹配一个字符!语法规则为:SELECT 字段名 FROM 表名 WHERE 字段名 LIKE '数据和_的组合' 举个例子我们想从表 Customers 中检索到 cust_id 尾数只有个位数的消费者的所有数据。表 Customers 的内容如下图所示。大家可以看到,我们只有一个 cust_id 尾数.

2020-12-03 21:59:06 35

原创 SQL Server 通配符%查询(一)

@R星校长第1关:通配符%的使用如何使用通配符 % 模糊匹配数据内容。在所有通配符中,最常用的通配符要数 %了。使用了%就意味着,你能从现有的数据中匹配到任意个数的字符(注意,可以是不止一个字符哟)。语法规则为: SELECT 字段名 FROM 表名 WHERE 字段名 LIKE '数据%'; 举个例子我们想从表 Customers 中检索到所有叫 Alice 的消费者的所有数据。表 Customers 的内容如下图所示。大家可以看到,我们有 Alice Nicholas 和 .

2020-12-03 00:18:31 63

原创 SQL Server 基本SELECT查询(三)

@R星校长第3关:使用WHERE语句进行检索如何使用WHERE语句和操作符来选择符合条件的数据?在实际情况中,我们不仅需要对某字段的全部数据进行检索,更多的是需要对符合我们需求的数据进行检索。SQL语言的发明者当然想到了这些,为我们提供了更多的方法来检索你想要的数据。WHERE语句就是这样一种存在,只要把你的需求正确地放在WHERE 后边,它就能帮你检索到你想要的内容。下表为与 WHERE语句搭配的操作符列表:使用WHERE语句检索单范围数据如果你想在房屋中介数据库中,寻找小于100万的房.

2020-12-02 19:38:43 31

原创 SQL Server 基本SELECT查询(二)

@R星校长第2关:带限制条件的查询和表达式查询查询数据表中的指定字段的数据;查询数据表中指定字段运算后的数据。相关知识为了完成本关任务,你需要掌握:1.使用限制关键字查询数据表中的指定字段的内容,2.使用运算符查询数据表中指定字段运算后的内容。带限制条件的查询SELECT语句可以帮你返回所有匹配的内容,甚至整张表的内容。但是如果你仅仅是想要第一行的数据或者前几行的数据怎么办呢?好消息是我们可以通过限制条件来查询,不过限制条件的语法在各个数据库中的语法是不同的。在 SQL Server 中.

2020-12-02 18:09:43 9

原创 SQL Server 基本SELECT查询(一)

@R星校长第1关:基本SELECT查询用 SELECT 语句检索数据表中指定字段的数据;用 SELECT 语句检索数据表中所有字段的数据。相关知识为了完成本关任务,你需要掌握:1.如何获取数据表中指定字段的数据,2.如何获取数据表中的所有数据若想使用 SELECT 语句来检索数据表中的数据,你至少得弄清楚两个重要的信息:(1) 你想检索的是什么?(2) 你想检索的内容它在什么地方?检索数据表中一个字段的内容我们将从最简单的SELECT语句开始学习语法规则为: SELECT 字段名 .

2020-12-01 23:25:07 35

原创 爬虫实战——周刊文章爬取(二)

@R星校长第2关:获取文章内容任务描述本关任务:编写一个爬虫,请求上一关获取的每个url,获取每篇文章的标题、作者、正文以及文章中全部图片的完整url。相关知识为了完成本关任务,你需要掌握xpath的基本使用。选取节点:路径表达式结果bookstore选取 bookstore 元素的所有子节点/bookstore选取根元素 bookstore。注:假如路径起始于正斜杠( / ),则此路径始终代表到某元素的绝对路径!bookstore/book选取属于 b.

2020-12-01 20:10:15 40

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除