SLR(1) 与 LR(1) 习题
给定拓展后的文法G如下:
1) S`->S 2) S->AS 3) S->ε 4)A->aA 5) A->b
a) 证明G[S]是 SLR(1) 文法;
b) 构造G[S]的识别活前缀的 LR(1) 项目集及DFA;
c) 构造G[S]的 LR(1) 分析表;
d) 给出输入串 abab# 的 LR(1) 分析过程。
分析
在做题时遇到了两个问题,一是构造 SLR(1) 项目集族时不会处理空产生式,二是构造 LR(1) 项目集闭包时,当 |FIRST(βa)| > 1 时不知道如何求解向前搜索符。
a) 先构造 LR(0) 项目集规范族
对空产生式,S->ε 仅有一个项目 S-> · 。
只给出存在冲突的项目集
I0:
S`->·S
S->·AS
S-> ·
A->·aA
A->·b
I2:
S->AS·
S->·AS
S-> ·;
A->·aA
A->·b
I0 和 I2 中都存在 A->·aA、A->·b与 S-> · 的移进-归约冲突,
所以 G[S] 不是LR(0) 文法。
b)
计算项目集 I0,先给出部分算法
若有项目 A->α·Bβ, a 属于 CLOSURE(I),
B->γ 是文法中的产生式,β∈V*, b∈FIRST(βa),
则 B->·γ, b 也属于 CLOSURE(I)
I0:
S`->·S, #
S->·AS, #
S-> · , #
A->·aA, a/b/# (1)
A->·b, a/b/# (2)
在 (1) 和 (2) 中,如果 |FIRST(βa)| > 1,使用 / 分隔向前搜索符 b。
本文详细探讨了SLR(1)和LR(1)文法的分析过程,针对给定的文法G[S],首先证明其为SLR(1)文法,然后逐步构建G[S]的LR(1)项目集、DFA以及分析表。在分析过程中,特别强调了如何处理空产生式以及当向前搜索符存在多个时的处理方法,并给出了输入串abab#的LR(1)分析过程,揭示了文法分析的关键步骤和技巧。
1675

被折叠的 条评论
为什么被折叠?



