线性回归实例——牙膏的销售量(Python实现、OLS最小二乘)

该博客通过分析牙膏销售量与价格差、广告费用之间的关系,利用Python实现线性回归模型。模型结果显示,价格差和广告费用对销售量有显著影响,R2=0.905,模型整体成立。考虑交互作用后,新模型的R2提升至0.921,进一步证实了价格和广告在销售中的交互影响。
摘要由CSDN通过智能技术生成

线性回归实例——牙膏的销售量(Python、OLS最小二乘)


一、问题
    建立牙膏销售量与价格、广告投入之间的模型,预测在不同价格和广告费用下的牙膏销售量。下列数据收集了30个销售周期本公司牙膏销售量、价格、广告费用及同期其他厂家同类牙膏的平均售价。

销售周期 公司销售价格 其它厂家平均价格 广告费用 价格差 销售量
1 3.85 3.8 5.5 -0.05 7.38
2 3.75 4 6.75 0.25 8.51
3 3.7 4.3 7.25 0.6 9.52
4 3.7 3.7 5.5 0 7.5
5 3.6 3.85 7 0.25 9.33
6 3.6 3.8 6.5 0.2 8.28
7 3.6 3.75 6.75 0.15 8.75
8 3.8 3.85 5.25 0.05 7.87
9 3.8 3.65 5.25 -0.15 7.1
10 3.85 4 6 0.15 8
11 3.9 4.1 6.5 0.2 7.89
12 3.7 3.8 6.25 0.1 8.15
13 3.75 4.15 7 0.4 9.1
14 3.75 4.2 6.9 0.45 8.86
15 3.8 4.15 6.8 0.35 8.9
16 3.7 4 6.8 0.3 8.87
17 3.8 4.3 7.1 0.5 9.26
18 3.8 4.3 7 0.5 9
19 3.7 4.1 6.8 0.4 8.75
20 3.8 3.75 6.5 -0.05 7.95
21 3.8 3.75 6.25 -0.05 7.65
22 3.75 3.65 6 -0.1 7.27
23 3.7 3.9 6.5 0.2 8
24 3.55 3.65 7 0.1 8.5
25 3.6 4.1 6.8 0.5 8.75
26 3.65 4.25 6.8 0.6 9.21
27 3.7 3.65 6.5 -0.05 8.27
28 3.75 3.75 5.75 0 7.67
29 3.8 3.85 5.8 0.05 7.93
30 3.7 4.25 6.8 0.55 9.26

二、分析与假设
    由于牙膏是生活必需品,对大多数顾客来说,在购买同类产品时更多的会在意不同品牌之间的价格差异,而不是它们本身的价格。因此,在研究各个因素对销售量的影响时,用价格差代替公司销售价格和其他厂家平均价格更为合适。

三、基本模型
    变量解释:
     y y y~公司牙膏销售量
     x 1 x_{1} x1~其他厂家与本公司价格差
     x 2 x_{2} x2~公司广告费用

    下图为变量 y y y x 1 x_{1} x1的散点图(图中蓝色区域为置信带)。

    可以看出, y y y x 1 x_{1} x1之间存在 y = β 0 + β 1 x 1 + ϵ y = \beta_{0}+\beta_{1}x_{1}+\epsilon y=β0+β1x1+ϵ 的线性关系,拟合直线为 y 1 = 7.814 + 2.665 y_{1} = 7.814+2.665 y1=7.814+2.665 × \times × x 1 x_{1} x1

    下图为 y y y x 2 x_{2} x2的散点图。

    可以看出, y y y x 2 x_{2} x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>