线性回归实例——牙膏的销售量(Python、OLS最小二乘)
一、问题:
建立牙膏销售量与价格、广告投入之间的模型,预测在不同价格和广告费用下的牙膏销售量。下列数据收集了30个销售周期本公司牙膏销售量、价格、广告费用及同期其他厂家同类牙膏的平均售价。
| 销售周期 | 公司销售价格 | 其它厂家平均价格 | 广告费用 | 价格差 | 销售量 |
|---|---|---|---|---|---|
| 1 | 3.85 | 3.8 | 5.5 | -0.05 | 7.38 |
| 2 | 3.75 | 4 | 6.75 | 0.25 | 8.51 |
| 3 | 3.7 | 4.3 | 7.25 | 0.6 | 9.52 |
| 4 | 3.7 | 3.7 | 5.5 | 0 | 7.5 |
| 5 | 3.6 | 3.85 | 7 | 0.25 | 9.33 |
| 6 | 3.6 | 3.8 | 6.5 | 0.2 | 8.28 |
| 7 | 3.6 | 3.75 | 6.75 | 0.15 | 8.75 |
| 8 | 3.8 | 3.85 | 5.25 | 0.05 | 7.87 |
| 9 | 3.8 | 3.65 | 5.25 | -0.15 | 7.1 |
| 10 | 3.85 | 4 | 6 | 0.15 | 8 |
| 11 | 3.9 | 4.1 | 6.5 | 0.2 | 7.89 |
| 12 | 3.7 | 3.8 | 6.25 | 0.1 | 8.15 |
| 13 | 3.75 | 4.15 | 7 | 0.4 | 9.1 |
| 14 | 3.75 | 4.2 | 6.9 | 0.45 | 8.86 |
| 15 | 3.8 | 4.15 | 6.8 | 0.35 | 8.9 |
| 16 | 3.7 | 4 | 6.8 | 0.3 | 8.87 |
| 17 | 3.8 | 4.3 | 7.1 | 0.5 | 9.26 |
| 18 | 3.8 | 4.3 | 7 | 0.5 | 9 |
| 19 | 3.7 | 4.1 | 6.8 | 0.4 | 8.75 |
| 20 | 3.8 | 3.75 | 6.5 | -0.05 | 7.95 |
| 21 | 3.8 | 3.75 | 6.25 | -0.05 | 7.65 |
| 22 | 3.75 | 3.65 | 6 | -0.1 | 7.27 |
| 23 | 3.7 | 3.9 | 6.5 | 0.2 | 8 |
| 24 | 3.55 | 3.65 | 7 | 0.1 | 8.5 |
| 25 | 3.6 | 4.1 | 6.8 | 0.5 | 8.75 |
| 26 | 3.65 | 4.25 | 6.8 | 0.6 | 9.21 |
| 27 | 3.7 | 3.65 | 6.5 | -0.05 | 8.27 |
| 28 | 3.75 | 3.75 | 5.75 | 0 | 7.67 |
| 29 | 3.8 | 3.85 | 5.8 | 0.05 | 7.93 |
| 30 | 3.7 | 4.25 | 6.8 | 0.55 | 9.26 |
二、分析与假设:
由于牙膏是生活必需品,对大多数顾客来说,在购买同类产品时更多的会在意不同品牌之间的价格差异,而不是它们本身的价格。因此,在研究各个因素对销售量的影响时,用价格差代替公司销售价格和其他厂家平均价格更为合适。
三、基本模型:
变量解释:
y y y~公司牙膏销售量
x 1 x_{1} x1~其他厂家与本公司价格差
x 2 x_{2} x2~公司广告费用
下图为变量 y y y与 x 1 x_{1} x1的散点图(图中蓝色区域为置信带)。
可以看出, y y y与 x 1 x_{1} x1之间存在 y = β 0 + β 1 x 1 + ϵ y = \beta_{0}+\beta_{1}x_{1}+\epsilon y=β0+β1x1+ϵ 的线性关系,拟合直线为 y 1 = 7.814 + 2.665 y_{1} = 7.814+2.665 y1=7.814+2.665 × \times × x 1 x_{1} x1。
下图为 y y y与 x 2 x_{2} x2的散点图。
可以看出, y y y与 x 2 x_{2} x

该博客通过分析牙膏销售量与价格差、广告费用之间的关系,利用Python实现线性回归模型。模型结果显示,价格差和广告费用对销售量有显著影响,R2=0.905,模型整体成立。考虑交互作用后,新模型的R2提升至0.921,进一步证实了价格和广告在销售中的交互影响。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



