引言
场景介绍:
许多互联网平台为了提高用户的参与度和忠诚度,会推出各种连续登录奖励机制。例如,游戏平台会给连续登录的玩家发放游戏道具、金币等奖励;学习类 APP 会为连续登录学习的用户提供积分,积分可兑换课程或其他福利。通过这些激励措施,平台希望用户能够养成持续使用产品的习惯,从而提升产品的活跃度和留存率。同时,对于平台运营者来说,分析用户的连续登录数据可以了解用户的使用习惯和忠诚度,进而优化产品功能和运营策略。
题目描述:
假设我们有一个记录用户登录信息的表,表名为 login_table,其中包含两个字段:uid(用户 ID)和 dt(登录日期)。现在需要完成以下三个任务:
- 查询连续登录超过三天的用户:找出在一段时间内,连续登录天数大于三天的用户列表。这有助于平台识别出那些高度活跃且对产品有较高忠诚度的用户,以便进一步进行精细化运营和奖励。
- 查询每个用户连续登录的最大天数:对于每个用户,统计其在所有登录记录中连续登录的最长时间段,这能帮助我们了解不同用户的活跃程度差异,为个性化运营提供数据基础。
- 查询一个用户连续登录的最大天数(可隔一天):在计算用户连续登录天数时,允许中间间隔一天,只要整体登录天数最多,就是我们要找的结果。比如用户在 1、3、5、6 日登录,那么其连续登录的最大天数为 6 天。这种统计方式可以更灵活地评估用户的活跃程度,考虑到了用户可能因为某些特殊情况中断一天登录,但整体仍保持较高的使用频率。
数据准备与代码实现
数据准备
1 2025-01-01
1 2025-01-02
1 2025-01-03
2 2025-01-07
2 2025-01-08
3 2025-01-09
3 2025-01-10
3 2025-01-12
3 2025-01-13
1. 查询连续登录超过三天的用户
思路:
- 用户登录记录编号:利用
row_number()函数按uid分区并依dt升序排序生成序号rn,实现对各用户登录时间进行排序编号 - 计算连续登录首日:利用
date_add函数将dt减去rn,计算每行对应的连续登录起始日期first_day。 - 选出连续登录超过三天大用户:利用
group by按uid和first_day分组,结合having筛选出分组行数大于等于3的记录,实现找出连续登录超三天的用户uid。
with data as (
select 1 as uid,'2025-01-01' as dt union all
select 1 as uid,'2025-01-02' as dt union all
select 1 as uid,'2025-01-03' as dt union all
select 2 as uid,'2025-01-07' as dt union all
select 2 as uid,'2025-01-08' as dt union all
select 3 as uid,'2025-01-09' as dt union all
select 3 as uid,'2025-01-10' as dt union all
select 3 as uid,'2025-01-12' as dt union all
select 3 as uid,'2025-01-13' as dt
),
data2 as (
select uid,dt,row_number

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



