总结了 scipy、numpy、pandas的高斯分布、pdf、方差、协方差比较。
multivariate_normal 是联合高斯分布
- n*m的数据,均值是m*1,协方差是m*m
- multivariate_normal.pdf 是 1*1
normal 是独立的高斯分布,即每列为独立的一元高斯分布。
- n*m的数据,均值是m*1,方差是m*1,
- normal.pdf(x,mu,var)是m*1,每个元素是该列的概率
Pandas
- n*m的数据,data.mean()均值是m*1
- data.cov()方差是m*m,
Numpy
- n*m的数据,np.mean(data)均值是m*1
- np.cov(data)协方差是n*n; 要变成特征的协方差np.cov(np.array(data).T)
- np.var(data)方差:axis=1 n*1 ,axis=0 m*1
这篇博客探讨了Scipy、NumPy和Pandas库在处理高斯分布、PDF、方差和协方差时的差异。`multivariate_normal`在Scipy中用于联合高斯分布,而`normal`在NumPy中表示独立的一元高斯分布。Pandas提供了数据集的均值、方差和协方差计算。注意,NumPy的`cov`函数计算样本协方差矩阵,转换为特征协方差需转置数据。
2491

被折叠的 条评论
为什么被折叠?



