scipy.stats multivariate_normal 与 numpy.normal 区别

这篇博客探讨了Scipy、NumPy和Pandas库在处理高斯分布、PDF、方差和协方差时的差异。`multivariate_normal`在Scipy中用于联合高斯分布,而`normal`在NumPy中表示独立的一元高斯分布。Pandas提供了数据集的均值、方差和协方差计算。注意,NumPy的`cov`函数计算样本协方差矩阵,转换为特征协方差需转置数据。
摘要由CSDN通过智能技术生成

总结了 scipy、numpy、pandas的高斯分布、pdf、方差、协方差比较。

multivariate_normal 是联合高斯分布

  1.         n*m的数据,均值是m*1,协方差是m*m
  2.         multivariate_normal.pdf 是 1*1

normal 是独立的高斯分布,即每列为独立的一元高斯分布。

  1.         n*m的数据,均值是m*1,方差是m*1,
  2.         normal.pdf(x,mu,var)是m*1,每个元素是该列的概率

Pandas

  1.         n*m的数据,data.mean()均值是m*1
  2.         data.cov()方差是m*m,

Numpy

  1.         n*m的数据,np.mean(data)均值是m*1
  2.         np.cov(data)协方差是n*n; 要变成特征的协方差np.cov(np.array(data).T)
  3.         np.var(data)方差:axis=1 n*1 ,axis=0 m*1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌新待开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值