数字图像处理之边缘检测

图像边缘检测是通过寻找像素灰度值快速变化的区域来定位图像的边界。通过对图像进行一阶导数运算,可以找到这些变化点。常用的求导方法包括Sobel算子和Laplacian算子。边缘检测通常涉及x轴和y轴方向的求导,将两个方向的结果合并得到最终的边缘图像。博客中详细介绍了边缘检测的数学原理和常用算子,如Roberts、Prewitt和Canny等。
摘要由CSDN通过智能技术生成

原理:

        图像边缘指的是图像中像素灰度值突然发生变化的区域,如果将图像的每一行像素和每一列像素都描述成一个关于灰度值的函数,那么图像边缘对应灰度值函数中函数值突然变大的区域(这个很好理解,在图像边缘处,灰度值变化大,导数必然变变大)因此,我们可以寻找导数值较大的区域去寻找函数中突然变化的区域(即边缘)。

求导公式如下:

\frac{df(x,y)}{dx} = f(x,y)-f(x-1,y)

        这种沿x轴方向求导对应的滤波器为[-1,1],同样沿y轴方向求导对应的滤波器为[-1,1]^{T}

        这种求导方式的计算结果最接近两个像素中间的位置,而两个邻近像素的中间不再有像素值,这时我们可以对公式作出改进。

改进后的公式如下:

\frac{df(x,y)}{dx} = \frac{f(x+1,y)-f(x-1,y)}{2}

        这里灰度值函数是连续的,所以不考虑不可导的情况。这种沿x轴方向求导对应的滤波器为[-0.5 ,0 ,0.5],同样沿y轴方向求导对应的滤波器为[-0.5,0,0.5]^{T}

        图像的边缘包含x方向的边缘和y方向的边缘,因此分别求取两个方向的边缘后,对两个方向的边缘求取并集就得到整幅图像的边缘,即将两个方向的边缘相加得到整幅图像的边缘。

边缘检测算子可以参考这两篇博客:

数字图像处理(19): 边缘检测算子(Roberts算子、Prewitt算子、Sobel算子 和 Laplacian算子)

Canny边缘检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>