terminate called after throwing an instance of ‘c10::CUDAError‘what(): CUDA error: an illegal memo

terminate called after throwing an instance of 'c10::CUDAError' what(): CUDA error: an illegal memory access was encountered CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.

如果你更换了数据集,并且本来能跑的代码突然报错如上,那么就是因为数据集太大了,爆显存了。调小数据集就可以了

根据提供的引用内容,当出现"terminate called after throwing an instance of 'c10::Error'"错误时,通常是由于在使用Libtorch或PyTorch时出现了问题。这个错误通常表示在代码中发生了一个内部断言失败。 解决这个问题的方法有以下几种: 1. 检查代码中是否存在错误:首先,你需要检查你的代码是否存在语法错误、逻辑错误或其他错误。确保你的代码没有任何问题,并且正确地使用了Libtorch或PyTorch的函数和方法。 2. 检查输入数据的格式:有时,这个错误可能是由于输入数据的格式不正确导致的。确保你的输入数据符合Libtorch或PyTorch的要求,并且正确地进行了预处理。 3. 检查Libtorch或PyTorch的版本:这个错误可能与你使用的Libtorch或PyTorch的版本有关。确保你使用的是最新版本,并且与你的代码兼容。 4. 查找相关文档和讨论:如果以上方法都没有解决你的问题,你可以查找Libtorch或PyTorch的官方文档、论坛或社区,寻找类似的问题和解决方案。你可以在这些资源中找到其他用户遇到类似问题的讨论和解决方法。 下面是一个例子,演示了如何使用Libtorch加载和运行一个简单的神经网络模型: ```cpp #include <torch/torch.h> int main() { // 定义一个简单的神经网络模型 struct Net : torch::nn::Module { Net() { fc1 = register_module("fc1", torch::nn::Linear(10, 5)); fc2 = register_module("fc2", torch::nn::Linear(5, 1)); } torch::Tensor forward(torch::Tensor x) { x = torch::relu(fc1->forward(x)); x = fc2->forward(x); return x; } torch::nn::Linear fc1{nullptr}, fc2{nullptr}; }; // 创建一个模型实例 Net net; // 创建一个随机输入张量 torch::Tensor input = torch::rand({1, 10}); // 运行模型 torch::Tensor output = net.forward(input); // 打印输出结果 std::cout << output << std::endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值