(邱维声)高等代数课程笔记:(引言)高等代数的研究对象

引言:高等代数的研究对象

\quad 作为高等代数课程的第一节课,需要先了解一下,我们需要从这门课程中学习什么。换言之,高等代数在研究什么?

\quad 我们在中学阶段就已经接触过"代数"了,并且对代数的第一印象就是“用字母表示数”:

\quad x , y , z x,y,z x,y,z 等字母来表示 未知量,如果是具体的问题,已知量 就是具体的数;如果是抽象问题,已知量一般用 a , b , c a,b,c a,b,c 等字母来表示。根据实际问题,可以找出等量关系,进而列出含有未知量的等式,即 方程

一元一次方程:在初中一年级,我们首先接触的是 一元一次方程,即形如

a x + b = c ax+b = c ax+b=c

的方程。

\quad a ≠ 0 a \ne 0 a=0 时,简单地通过四则运算,就可以求得方程的解

x = c − b a . x = \frac{c-b}{a}. x=acb.

\quad 注意到,上面的解是一个"未知量在左边"的等式,称为一元一次方程的 求根公式

一元二次方程:到了初中三年级,我们又接触了 一元二次方程,即形如

a x 2 + b x + c = 0 ax^{2} + bx +c = 0 ax2+bx+c=0

的方程。

\quad 当然,一元二次方程也有求根公式。

  • a ≠ 0 a \ne 0 a=0 b 2 − 4 a c ≥ 0 b^{2}-4ac \ge 0 b24ac0 时,方程有解

x = − b ± b 2 − 4 a c 2 a . x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. x=2ab±b24ac .

  • a ≠ 0 a \ne 0 a=0 b 2 − 4 a c > 0 b^{2} - 4ac >0 b24ac>0 时,方程有两个解,否则,方程仅有一解。
  • a = 0 a = 0 a=0 时,方程 退化 为 一元一次方程。

一元高次方程:基于一元一次、二次方程,自然而然地可以将一元方程推广到三次、四次、…… n n n 次方程。方便起见,我们将三次及三次以上的一元方程统称为 一元高次方程

\quad 很自然地,对于一元高次方程,我们会关心其求解问题。换言之,一元高次方程有哪些根?该问题也是经典代数学的中心问题。

  • 一元高次方程的根怎么求?
  • 是否像二次方程那般具有求根公式?

\quad 简单地总结一下,我们在一元一次方程的基础上,通过不断提高方程的次数,得到了一元高次方程,进而引出了经典代数学的研究问题。

\quad 但事实上,在方程的“大家族”中,一元方程往往是最简单的。在实际问题中,我们遇到的大量问题都不止一个未知量。这就驱使我们去研究“多元方程”。

\quad 下面,我们来讨论多个未知量的情形。

\quad 在初中一年级,我们就已经接触了二元(三元)一次方程及其方程组。

二元一次方程:含有两个未知量,且每个未知量都是一次的方程,称为 二元一次方程

a x + b y + c = 0. ax + by + c = 0. ax+by+c=0.

三元一次方程:含有三个未知量,且每个未知量都是一次的方程,称为 三元一次方程

a x + b y + c z + d = 0. ax+by+cz+d = 0. ax+by+cz+d=0.

\quad 满足二元、三元一次方程的解有很多。在初中一年级,我们只是简单地验证了这样一个结论。事实上,在学习了初等解析几何后,我们知道:

  • 二元一次方程的所有解构成平面直角坐标系中的一条直线,直线上有无穷多个点,因此二元一次方程有无穷多解;
  • 三元一次方程的所有解构成空间直角坐标系中的一个平面,平面上有无穷多个点,因此三元一次方程有无穷多解。

\quad 在实际应用中,我们更多地是考虑满足多个方程的公共解,即:求“方程组”的解。

二元一次方程组:由两个二元一次方程构成的方程组称为 二元一次方程组

{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 . \begin{cases} a_{11} x_{1} + a_{12} x_{2} = b_{1} \\ a_{21} x_{1} + a_{22} x_{2} = b_{2}. \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2.

\quad 注意:为了方便后续讨论,上面方程组中的二元一次方程与前面介绍时的形式有所不同,但本质上是一致的。下面的三元一次方程类同。

三元一次方程组:由三个三元一次方程构成的方程组称为 三元一次方程组

{ a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 . \begin{cases} a_{11} x_{1} + a_{12} x_{2} + a_{13} x_{3} = b_{1} \\ a_{21} x_{1} + a_{22} x_{2} + a_{23} x_{3} = b_{2} \\ a_{31} x_{1} + a_{32} x_{2} + a_{33} x_{3} = b_{3}. \end{cases} a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3.

\quad 简单地总结一下,基于二元、三元一次方程,通过不断增加未知量的个数,可以推广到“多元一次方程”。那么由多个多元一次方程构成的方程组就称为“多元一次方程组”。

\quad 注意,仔细分析前面的二元一次方程组和三元一次方程组可以发现,方程组所含方程的个数与未知量的个数是一致的。事实上,该条件并不是必要的。
\quad 至于为何对二元、三元一次方程组作如此定义,在完整地学习过线性方程组理论后就能理解了,在此先留个疑问。

例 1:如下所示,这是一个典型的三元一次方程组。

{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10. \begin{cases} \begin{aligned} x_{1} + 3 x_{2} + x_{3} &= 2 \\ 3 x_{1} + 4 x_{2} + 2 x_{3} &= 9 \\ {-} x_{1} - 5 x_{2} + 4 x_{3} &= 10. \end{aligned} \end{cases} x1+3x2+x33x1+4x2+2x3x15x2+4x3=2=9=10.

\quad 但从现在起,若见到如下形式的三元一次方程组,请不要惊奇,它们是合法的!

{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9. \begin{cases} \begin{aligned} x_{1} + 3 x_{2} + x_{3} &= 2 \\ 3 x_{1} + 4 x_{2} + 2 x_{3} &= 9. \end{aligned} \end{cases} {x1+3x2+x33x1+4x2+2x3=2=9.

或者

{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1. \begin{cases} \begin{aligned} x_{1} + 3 x_{2} + x_{3} &= 2 \\ 3 x_{1} + 4 x_{2} + 2 x_{3} &= 9 \\ {- }x_{1} - 5 x_{2} + 4 x_{3} &= 10 \\ 2 x_{1} + 7 x_{2} + x_{3} &= 1. \end{aligned} \end{cases} x1+3x2+x33x1+4x2+2x3x15x2+4x32x1+7x2+x3=2=9=10=1.

#

n 元一次方程:一般地,含有 n n n 个未知量,且每个未知量都是一次的方程,称为 n 元一次方程

n 元一次方程组:由 s s s n n n 元一次方程构成的方程组称为 n 元一次方程组

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ a s 1 x 1 + a s 2 x 2 + ⋯ + a s n x n = b s . \begin{cases} a_{11} x_{1} + a_{12} x_{2} + \cdots + a_{1n} x_{n} = b_{1} \\ a_{21} x_{1} + a_{22} x_{2} + \cdots + a_{2n} x_{n} = b_{2} \\ \cdots \\ a_{s1} x_{1} + a_{s2} x_{2} + \cdots + a_{sn} x_{n} = b_{s}. \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2as1x1+as2x2++asnxn=bs.

\quad 其中, a i j   ( 1 ≤ i ≤ s , 1 ≤ j ≤ n ) a_{ij} ~ (1 \le i \le s,1 \le j \le n) aij (1is,1jn) 称为 系数 x j   ( 1 ≤ j ≤ n ) x_{j} ~ (1 \le j \le n) xj (1jn) 称为 未知量 b i   ( 1 ≤ i ≤ s ) b_{i} ~ (1 \le i \le s) bi (1is) 称为 常数项

\quad 再次强调一下,方程组的个数 s s s 与未知量的个数 n n n 不一定相等!

\quad 联想一下中学所学过的初等解析几何知识:二元一次方程代表了平面直角坐标系中的一条直线;三元一次方程代表了空间直角坐标系中的一个平面。这种“直的”、“平展的”性质,我们统称为“线性”。

n 元线性方程组:借用几何直观,通常将 n n n 元一次方程组称为 n 元线性方程组

\quad 简单地总结一下,在二元、三元一次方程组的基础上,通过不断增加一次方程未知量的个数,我们推广得到了 n n n 元线性方程组。

\quad 自然而然地,我们下一步的任务就是讨论:如何求解一般的 n n n 元线性方程组。

\quad 在中学阶段,我们就已经学会了如何求解二元、三元线性方程组。其中最主要的方法就是:代入消元法加减消元法

\quad 回顾二元、三元线性方程组的求解过程,可以发现:

  • 都是在进行系数、常数项的运算;
  • 字母表示的未知量并不参与运算。

\quad 为了简化书写,自然而然地会想到将方程组的系数、常数项”抽离“出来。例如,对于 例 1 中的第 3 3 3 个方程,可以将其所有系数和常数项按照原来的次序排成一张”表“:

( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) \left( \begin{matrix} 1 & 3 & 1 & 2 \\ 3 & 4 & 2 & 9 \\ -1 & -5 & 4 & 10 \\ 2 & 7 & 1 & 1 \end{matrix} \right) 13123457124129101

这就是”矩阵“。

矩阵:由 s × n s \times n s×n 个数排成的一张 s s s 行、 n n n 列的表

( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a s 1 a s 2 ⋯ a s n ) \left(\begin{matrix} a_{11} & a_{12} &\cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{s1} & a_{s2} &\cdots &a_{sn} \end{matrix}\right) a11a21as1a12a22as2a1na2nasn

称为一个 s × n \color{blue} s\times n s×n 矩阵,通常用大写的字母 A , B , C , ⋯ A,B,C,\cdots A,B,C, 等表示。

\quad 特别地,若矩阵 A A A 的行数 s s s 与列数 n n n 相等,则称 A A A n \color{blue}n n 级矩阵

系数矩阵与增广矩阵:将 n n n 元线性方程组的所有系数抽离出来,按照原来的次序排成的矩阵称为该线性方程组的 系数矩阵;将所有系数和常数项同时抽离出来,按照原来的次序排成的矩阵称为该线性方程组的 增广矩阵

\quad 在积累了大量求解二元、三元线性方程组经验的基础上,直觉地可以判断:增广矩阵对于求解 n n n 元线性方程组有着重要的作用!事实也的确如此,具体内容将在第二章中展开论述。

\quad 未知量的数目越多,线性方程组的求解就越困难!得益于现代计算机的迅速发展,线性方程组变得越发重要(之前不易解的,现在方便解了)。

\quad 可以说,高等代数的出发点之一就是" n n n 元线性方程组的求解问题"。百米赛跑,始于此!

\quad 通过前面的简单讨论可知,研究 n n n 元线性方程组的解法,自然而然地要用到矩阵。

\quad 但时,仅了解一般的 n n n 元线性方程组的解法是远远不够的。对于一般的 n n n 元线性方程组,最好能够预先判别一下其解的情况(有解?无解?有多少解?)。否则,解了半天才发现解不存在就太浪费时间了。

\quad 对于一般的 n n n 元线性方程组解的判定问题,我们可以从借助几何直观入手。比如,由初等解析几何可知:二元一次方程代表了一条直线,那么二元一次方程组就是两条直线。两条直线的关系可以是:相交、平行、重合。而两直线的交点恰好是方程组的解。

  • 有唯一解 ⟷ \longleftrightarrow 两直线相交;
  • 没有解 ⟷ \longleftrightarrow 两直线平行;
  • 有无穷多解 ⟷ \longleftrightarrow 两直线重合。

\quad 根据这种几何直观,我们可以猜测:对于一般的 n n n 元线性方程组而言,其解至少有三种情况:

  • 有唯一解;
  • 没有解;
  • 有无穷多解。

\quad 当然,仍需要作进一步探讨:是否存在其它解的情况?比如,有且只有两个解?

\quad 综上所述,我们需要能对一般 n n n 元线性方程组解的情况进行判定的判别方法。为了能使判别方法对于一般的 n n n 元线性方程组有效,自然而然地,我们会想到利用线性方程组的系数和常数项,也就是说,要用到线性方程组的系数矩阵和增广矩阵。

\quad 现在,我们关心一下系数矩阵或增广矩阵。以系数矩阵为例,矩阵的每一行由 n n n 个数有序地排列而成。

\quad 类比平面坐标系中的有序数对,空间坐标中的三维数组、物理中的四维时空等等,可以抽象出 n \color{blue} n n 元有序数组 的概念。借助于几何直观, n n n 元有序数组也可称作 n \color{blue} n n 维向量。在引入运算后,可以得到 n \color{blue} n n 维向量空间

\quad 简单总结一下,研究一般 n n n 元线性方程组解情况的判别方法,可以促使、激励我们研究 n n n 维向量,进而研究 n n n 维向量空间。

\quad 可以猜测:研究 n n n 维向量空间,将对研究一般 n n n 元线性方程组解情况的判别方法有促进作用。事实的确如此,具体内容将在第 3 3 3 章展开论述。

\quad 事实上,若 n n n 元线性方程组有无穷多解,还可以通过 n n n 维向量空间研究解集的结构!

\quad 之后,在几何空间、 n n n 维向量空间的基础上,还可以抓住主要特征,作进一步抽象,得到 线性空间 的概念。

\quad 为什么要抽象出线性空间呢?这就是数学的特点,也是数学的魅力所在!当解决了一类问题后,应当沿着解法进一步探索,以期得到新的理论,使其能处理最广泛的问题。

\quad 不得不承认的是:线性空间的用处甚广!

  • 自然界中存在大量的有关线性(直的、平展的)的问题;
  • 诸多非线性(弯的、曲的)的问题,可以通过微分细化,将每一部分近似看作线性问题求解。

\quad 举个例子,拱桥是弯的,但堆砌拱桥的砖却是直的!

\quad 总而言之,线性空间可以解决自然界中的大量线性问题,而诸多非线性问题,往往可以在局部化后,转换为线性问题进行求解。因此,线性空间是如此重要!

\quad 线性空间好比是舞台,通过线性空间,可以展示各种各样的节目。空间的旋转、变换、压缩等都是一种映射。在线性空间的基础上,可以研究在其上“投影”映射。特别地,我们仅讨论一类最简单、最常用的映射—— 线性映射

\quad 特别地,空间到自身的线性映射称为 线性变换

\quad 事实上,可以通过线性映射来研究矩阵,也可以通过矩阵来研究线性映射。

\quad 另一方面,我们说几何空间是一个线性空间,但线性空间仅有加法、数量乘法、并没有长度、夹角的概念。因此,有必要尝试在线性空间中引入度量的概念。

\quad 如何引入度量呢?想一下:在平面几何中,哪个量既与长度有关,又与夹角有关?又与距离有关?答案是 内积

( a ⃗ , b ⃗ ) = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos ⁡ < a ⃗ , b ⃗ > (\vec{\boldsymbol{a}},\vec{\boldsymbol{b}}) = |\vec{\boldsymbol{a}}| \cdot |\vec{\boldsymbol{b}}| \cdot \cos <\vec{\boldsymbol{a}},\vec{\boldsymbol{b}}> (a ,b )=a b cos<a ,b >

两个向量对应一个实数 ⟶ 函数 → 内积运算性质 双线性函数 两个向量对应一个实数 \longrightarrow 函数 \xrightarrow{\text{内积运算性质}} 双线性函数 两个向量对应一个实数函数内积运算性质 双线性函数

\quad 另外,对于具有度量的线性空间,我们还可以研究其上的线性变换。

\quad 以上即为以 n n n 元线性方程组为出发点,所能探究的高等代数内容。该部分内容实质上就是“线性代数”的主要内容。

线性代数的主线是:研究线性空间及其线性映射。

\quad 正如前面所叙,方程的另一发展方向是“一元高次方程的求根问题”。

a n x n + a n − 1 x n − 1 + ⋯ a 1 x + a 0 = 0. a_{n}x^{n} + a_{n-1} x^{n-1} + \cdots a_{1} x + a_{0} = 0. anxn+an1xn1+a1x+a0=0.

\quad 其中, a n x n + a n − 1 x n − 1 + ⋯ a 1 x + a 0 a_{n}x^{n} + a_{n-1} x^{n-1} + \cdots a_{1} x + a_{0} anxn+an1xn1+a1x+a0 称为 一元多项式,所有一元多项式构成 一元多项式环

\quad 研究一元高次方程求根,自然要研究一元多项式环的结构。

\quad 之后,在整数环、一元多项式环的基础上,可以抽象出 的概念。

  • 二次方程的求根公式最早可追溯至公元前 1700 1700 1700 的古巴比伦;
  • 三次、四次方程直到公元 1500 1500 1500 年才由费罗等人给出求根公式;
  • 伽罗瓦比较简洁地证明了高于四次地一般方程不能由求根公式求解,同时证明了五次及五次以上的方程能够用求根公式求解的充分必要条件是这个方程的群是可解群。

\quad 伽罗瓦在研究一元高次方程有没有根的过程中,创造性地提出了 的概念。从此,代数学的研究对象发生了革命性的变革:

  • 经典代数学以研究一元高次方程的求根公式为中心问题;
  • 近世代数学则以环、域、群等代数系统的结构以及它们之间保持运算的映射(态射)为研究中心。

\quad 近世代数,也称为抽象代数。

\quad 高等代数研究的另一部分内容就是一元(或 n n n 元)多项式环的结构及其通用性质。

\quad 最后,介绍一下学习方法:数学的思维方式。

  1. 观察 客观现象(纷繁复杂);
  2. 提出 主要研究的问题;
  3. 抓住 主要特征;
  4. 抽象 出概念,建立模型;
  5. 探索(应用直觉,类比,归纳,联想,推理)
  6. 猜测 可能有的规律;
  7. 认证 深入分析,应用定义、公理、已证的定理或命题进行推理;
  8. 揭示 事务的内在规律(井然有序)。

参考

[1] 邱维声. 高等代数课程.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值