《论文阅读》TSAM:一个因果情绪蕴含的双流注意模型 COLING 2022

31 篇文章 13 订阅 ¥29.90 ¥99.00
5 篇文章 0 订阅
这篇论文介绍了TSAM,一种用于因果情绪蕴含的双流注意模型,旨在捕捉会话历史中的情绪和说话人信息。TSAM包含情绪和说话者信息的交互模块,通过RoBERTa进行上下文表示,并在说话者关系图上执行注意力。实验表明模型能有效利用情绪和说话者信息进行因果预测。
摘要由CSDN通过智能技术生成

《论文阅读》TSAM:一个因果情绪蕴含的双流注意模型

前言

亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~
无抄袭,无复制,纯手工敲击键盘~

今天为大家带来的是《TSAM: A Two-Stream Attention Model for Causal Emotion Entailment》

在这里插入图片描述


出版: COLING

时间:2022

类型:因果情绪蕴含

关键词:知识桥;因果;情绪;蕴含

作者:Duzhen Zhang, Zhen Yang等

第一作者机构:Pattern Recognition Center, WeChat AI, Tencent Inc, Beijing, China

简介

以往的方法将CEE视为一组独立的话语对分类问题,忽略了会话历史中的情绪和说话人信息

因此本文提出:

1)捕获全局视图中话语之间的相关性

2)提出分别融入情绪和说话者信息的模块

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

365JHWZGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值