《论文阅读》通过顺序不敏感的表示正则化实现稳健的个性化对话生成 ACL 2023

本文介绍了一种新的方法,通过顺序不敏感的表示正则化来提高个性化对话生成的鲁棒性。研究发现,输入个性化信息的顺序会影响生成的回复质量。该方法旨在降低模型对顺序的敏感性,以产生更加一致的个性化回复。实验结果表明,这种方法能有效改善不同输入顺序下模型的表现。
摘要由CSDN通过智能技术生成

《论文阅读》通过顺序不敏感的表示正则化实现稳健的个性化对话生成 ACL 2023

前言

亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~
无抄袭,无复制,纯手工敲击键盘~

今天为大家带来的是《Towards Robust Personalized Dialogue Generation via Order-Insensitive Representation Regularization》

在这里插入图片描述


出版:ACL

时间:2023

类型:个性化对话生成

特点:个性化;回复生成;鲁棒性;表示正则化

作者:Liang Chen

第一作者机构:The Chinese University of Hong Kong

相关个性化生成论文推荐

简介

生成个性化一致性回复是至关重要的,过往的方法只是将个性化信息进行简单地拼接,然而作者通过实验分析发现,个性化信息输入模型的顺序会产生相差较大的结果,为了避免模型对顺序过于敏感,本文提出一种对顺序不敏感的生成方法(限制的优化方法)

如上图所示,不同的 Persona 对于生成的结果有较大的影响,紫色框的回复明显比蓝色框的回复更具有一致性

更具体的实验数据可以从上表中看出,作者将个性化信息所有可能的结果拼接上上下文依次输入到模型中,将最好的结果和最差的结果分别记录下来,由此得知,the ordering of persona in the input leads to different representations of context and response

问题定义

方法

作者将个性化优化问题转化为在不确定个性化信息输入顺序的情况下优化个性化模型

具体做法就是将不同的个性化顺序输入模型后,使得输出的表示彼此之间差异不大,理想情况下,不管什么输入顺序最后都能输出相同的表示

损失函数

γ \gamma γ 是一个乘数,可以随着训练过程进行更新

实验结果

从实验结果可以看出,使用ORIG之后提高了最差顺序的表现,降低了最好顺序的表现,总体来说就是提高了均值和方差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

365JHWZGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值