150. 逆波兰表达式求值
本题不难,但第一次做的话,会很难想到,所以先看视频,了解思路再去做题
题目链接/文章讲解/视频讲解:代码随想录
状态:想到要用栈做,但不知道怎么做
class Solution:
def evalRPN(self, tokens: List[str]) -> int:
stack=list()
for token in tokens:
if token.isdigit() or (len(token)>1 and token[1].isdigit()):
stack.append(token)
else:
op2=str(stack.pop())
op1=str(stack.pop())
stack.append(str(int(eval(op1+token+op2))))
return int(stack.pop())
239. 滑动窗口最大值 (有点难度,可能代码写不出来,但一刷至少需要理解思路)
之前讲的都是栈的应用,这次该是队列的应用了。
本题算比较有难度的,需要自己去构造单调队列,建议先看视频来理解。
题目链接/文章讲解/视频讲解:代码随想录
状态:不会
单调队列,保持队列里是单调递增,push时用while进行调整,而非if
from collections import deque
class MyQueue:
def __init__(self):
self.queue=deque()
def pop(self,value):
if self.queue and self.queue[0]==value:
self.queue.popleft()
def push(self,value):
while self.queue and self.queue[-1]<value:
self.queue.pop()
self.queue.append(value)
def front(self):
return self.queue[0]
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
que=MyQueue()
result=[]
for i in range(k):
que.push(nums[i])
result.append(que.front())
for i in range(k,len(nums)):
que.pop(nums[i-k])
que.push(nums[i])
result.append(que.front())
return result
347.前 K 个高频元素 (有点难度,可能代码写不出来,一刷至少需要理解思路)
大/小顶堆的应用, 在C++中就是优先级队列
本题是 大数据中取前k值 的经典思路,了解想法之后,不算难。
题目链接/文章讲解/视频讲解:代码随想录
状态:不会
用到小顶堆,按第一个元素排序,若第一个元素相同则排第二个,堆顶一定是最小的,堆中其他元素的顺序由堆的内部结构(二叉堆)决定,并不是全局升序排列。
import heapq
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
map_={}
for i in range(len(nums)):
map_[nums[i]]=map_.get(nums[i],0)+1
pri_que=[]
for value,freq in map_.items():
heapq.heappush(pri_que,(freq,value))
if len(pri_que)>k:
heapq.heappop(pri_que)
result=[0]*k
for i in range(k-1,-1,-1):
result[i]=heapq.heappop(pri_que)[1]
return result