Philo`
码龄6年
关注
提问 私信
  • 博客:598,049
    社区:154
    动态:147
    598,350
    总访问量
  • 138
    原创
  • 19,199
    排名
  • 19,973
    粉丝

个人简介:一个人至少拥有一个梦想,有一个理由去坚强。心若没有栖息的地方,到哪里都是在流浪。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2019-04-02
博客简介:

Philo的博客

查看详细资料
  • 原力等级
    当前等级
    7
    当前总分
    4,250
    当月
    7
个人成就
  • 人工智能领域优质创作者
  • 获得790次点赞
  • 内容获得297次评论
  • 获得3,706次收藏
  • 代码片获得8,402次分享
创作历程
  • 1篇
    2025年
  • 23篇
    2024年
  • 22篇
    2023年
  • 91篇
    2022年
  • 1篇
    2020年
成就勋章
TA的专栏
  • 医学图像分割论文阅读
    付费
    15篇
  • 2022年研究生数学建模竞赛备战
    8篇
  • 深度学习储备知识
    17篇
  • 模型部件
    14篇
  • 医学图像分割
    7篇
  • Pytorch
    9篇
  • 数据预处理
    13篇
  • 从X入门深度学习Pytorch版本
    4篇
  • 论文研读
    15篇
  • 中科院二区文章解读
    4篇
  • 会议论文研读
    2篇
  • 经典网络复现
    7篇
  • Pytorch官网阅读
    1篇
  • UNet
    2篇
  • 深度学习记录
    11篇
  • 报错记录
    7篇
  • 计算机毕业设计
    5篇
  • 个人经历
    2篇
  • HTML/CSS
    8篇
  • JS
    8篇
  • Python学习
    15篇
  • Anaconda使用
    3篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习图像处理
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于对比增强的超声视频的域知识为乳腺癌诊断提供了深度学习

近年来,深度学习已被广​​泛用于乳腺癌的诊断中,并且出现了许多高性能模型。但是,大多数现有的深度学习模型主要基于静态乳房超声(US)图像。在实际诊断过程中,对比增强超声(CEU)是放射科医生常用的技术。与静态乳房图像相比,CEUS视频可以提供更详细的肿瘤血液供应信息,因此可以帮助放射学家进行更准确的诊断。在本文中,我们提出了一个基于CEUS视频的新型诊断模型。该模型的骨干是一个3D卷积神经网络。更具体地说,我们注意到放射线医生在浏览CEUS视频时通常遵循两种特定模式。
原创
发布博客 2025.02.08 ·
304 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2025年博士自荐——给个机会我定肝脑涂地(狗头)

首先感谢各位在百忙之中抽空阅读我的申博自荐信!我是徐州医科大学生物医学工程25届硕士研究生ZQ,申请攻读贵组2025级博士研究生。我的主要研究为基于深度学习的医学图像处理,包括纵膈淋巴结、乳腺病灶超声图像分割、超声图像-SAM大模型应用等。以第一作者发表中科院三区SCI文章一篇、北大核心一篇、EI一篇。具体成果包括:以第一作者在《中国图象图形学报》(北核)和《Frontiers in Neuroscience》(Q2,IF:3.2)分别发表论文1篇,参与发明专利授权3项(2项三作1项二作)。另有两篇SCI
原创
发布博客 2024.10.21 ·
572 阅读 ·
11 点赞 ·
6 评论 ·
0 收藏

Windows 下安装mamba_ssm 记录,包括causal-conv1d和mamba-ssm

我也是装了两天左右才把windows的mamba-ssm装好,摸索了很多,下面是一些在安装过程中的问题和提示,下载链接:https://download.pytorch.org/whl/cu118。,把setuptools卸载干净就行,包括python自带的。这个报错总结起来就是。
原创
发布博客 2024.10.08 ·
2982 阅读 ·
16 点赞 ·
4 评论 ·
37 收藏

部署SAM2遇到的问题

起初,`我的Python版本为3.7,PyTorch版本为1.12`。然而,由于SAM2中的一个Attention模块需要更高版本的PyTorch,我按照SAM2-Adapter的要求创建了一个新的环境,`升级到了Python 3.8和PyTorch 2.4`。在此过程中遇到了一些问题,记录如下。
原创
发布博客 2024.08.27 ·
638 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据处理——根本表格信息重写图片名,检查图片名是否对应,二值图转换,输出二值图中目标个数等

1. 根据表格信息重命名图片名称2. 判断两个文件夹中名称是否相同3. 按照要求重命名图片名称4. 根据图片名称重命名图片5. 将图片转换成二值图并改变后缀名6. 统计二值图中目标的个数并输出符号条件的图片名称7. 将JSON数据写到表格中8. 重命名data下的各个数据集中的图片名
原创
发布博客 2024.08.13 ·
735 阅读 ·
17 点赞 ·
0 评论 ·
24 收藏

分割大模型论文阅读——SAMUS

分割任意模型(SAM)是一种著名的通用图像分割模型,最近在医学图像分割领域引起了相当多的关注。尽管 SAM 在自然图像上表现出色,但在处理医学图像时**,尤其是涉及低对比度、模糊边界、复杂形状和小尺寸物体的图像时,它会遇到显着的性能下降和有限的泛化能力。** 在本文中,我们提出了 SAMUS,一种专为超声图像分割而定制的通用模型。与之前基于SAM的通用模型相比,SAMUS不仅追求更好的泛化性,而且还追求更低的部署成本,使其更适合临床应用。
原创
发布博客 2024.05.20 ·
782 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

分割大模型论文阅读——SAM-Med2D

Segment Anything Model (SAM) 代表了自然图像分割领域最先进的研究进展,通过点和边界框等输入提示取得了令人印象深刻的结果。然而,我们的评估和最近的研究表明,直接将预训练的 SAM 应用于医学图像分割并不能产生令人满意的性能。这种限制主要源于自然图像和医学图像之间的显着域差距。为了弥补这一差距,我们引入了 SAM-Med2D,这是将 SAM 应用于医学 2D 图像的最全面的研究。收集最大规模的医学数据的综合分析、对各种微调方案最全面的研究、对性能最全面的评估。具体来说。
原创
发布博客 2024.05.20 ·
1389 阅读 ·
15 点赞 ·
1 评论 ·
9 收藏

分割大模型论文阅读——Medical SAM Adapter Adapting Segment Anything Model for Medical Image Segmentation

Segment Anything Model (SAM) 最近在图像分割领域广受欢迎,因为它在各种分割任务中具有令人印象深刻的功能及其基于提示的界面。然而,最近的研究和个别实验表明,由于缺乏医学专业知识,SAM 在医学图像分割方面表现不佳。这就提出了如何增强 SAM 对医学图像的分割能力的问题。在本文中,我们没有对 SAM 模型进行微调,而是提出了医学 SAM 适配器 (Med-SA),它使用轻量而有效的适应技术将特定领域的医学知识融入到分割模型中。
原创
发布博客 2024.05.20 ·
560 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

分割大模型论文阅读——nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance

计算机视觉基础模型的最新发展,特别是分割任意模型(SAM),允许可扩展且与领域无关的图像分割作为通用分割工具。与此同时,医学图像分割领域也从 nnUNet 等专门的神经网络中受益匪浅,该网络在特定领域的数据集上进行训练,并且可以自动配置网络以适应特定的分割挑战。为了结合基础模型和特定领域模型的优点,我们提出了 nnSAM,它将 SAM 模型与 nnUNet 模型协同集成,以实现更准确和鲁棒的医学图像分割。
原创
发布博客 2024.05.20 ·
468 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

分割大模型论文阅读——Ladder Fine-tuning approach for SAM integrating complementary network

最近,引入了基础模型来演示计算机视觉领域的各种任务。这些模型(例如分割任意模型(SAM))是使用庞大数据集训练的通用模型。目前,正在进行的研究重点是探索这些通用模型在特定领域(例如医学成像)的有效利用。然而,在医学成像中,由于隐私问题和其他因素,训练样本的缺乏给这些广义模型应用于医学图像分割任务带来了重大挑战。为了解决这个问题,对这些模型进行有效的微调对于确保其最佳利用率至关重要。在本研究中,我们建议将互补的卷积神经网络 (CNN) 与标准 SAM 网络结合起来进行医学图像分割。
原创
发布博客 2024.05.20 ·
243 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

分割大模型论文阅读——UN-SAM: Universal Prompt-Free Segmentation for Generalized Nuclei Images

在数字病理学中,精确的细胞核分割至关重要,但受到组织类型、染色方案和成像条件多样性的挑战。最近,分割任何模型(SAM)在自然场景中展现出压倒性的性能,并且对医学成像的适应性令人印象深刻。尽管有这些优点,但对劳动密集型手动注释作为分割提示的依赖严重阻碍了其临床适用性,特别是对于包含大量细胞的核图像分析,其中密集的手动提示是不切实际的。为了克服当前 SAM 方法的局限性,同时保留其优势,我们提出了用于细胞核分割的通用无提示 SAM 框架 (UN-SAM),通过提供具有卓越泛化能力的全自动解决方案。
原创
发布博客 2024.05.20 ·
647 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

分割大模型论文阅读——SAM on Medical Images: A Comprehensive Study on Three Prompt Modes

分割任意模型(SAM)最近引人注目,激发了许多研究人员探索其在零样本泛化能力方面的潜力和局限性。作为第一个用于分割任务的快速基础模型,它是在具有空前数量的图像和注释的大型数据集上进行训练的。这种大规模数据集及其及时性赋予模型强大的零样本泛化能力。尽管 SAM 在多个数据集上表现出了有竞争力的性能,但我们仍然想研究其在医学图像上的零样本泛化。众所周知,医学图像标注的获取通常需要专业从业者的大量努力。
原创
发布博客 2024.05.20 ·
125 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

分割大模型论文阅读——All-in-SAM: from Weak Annotation to Pixel-wise Nuclei Segmentation

分割任意模型 (SAM) 是最近在通用零样本分割方法中提出的基于提示的分割模型。凭借零样本分割能力,SAM 在各种分割任务上实现了令人印象深刻的灵活性和精度。然而,当前的流程在推理阶段需要手动提示,这对于生物医学图像分割来说仍然是资源密集型的。在本文中,我们没有在推理阶段使用提示,而是引入了一种利用 SAM 的方法(称为 all-in-SAM),贯穿整个 AI 开发工作流程(从注释生成到模型微调),而无需在推理过程中进行手动提示阶段。具体来说,SAM 首先用于根据弱提示(例如点、边界框)生成像素级注释。
原创
发布博客 2024.05.20 ·
200 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

分割大模型论文阅读——Convolution Meets LORA: Parameter Efficient Finetuning for Segment Anything Model

Segment Anything Model (SAM) 是图像分割的基础框架。虽然它在典型场景中表现出显着的零样本泛化能力,但当应用于医学图像和遥感等专业领域时,其优势就会减弱。为了解决这一限制,本文引入了 Conv-LoRA,这是一种简单而有效的参数高效微调方法。通过将超轻量级卷积参数集成到低秩适应 (LoRA) 中,Conv-LoRA 可以将与图像相关的归纳偏差注入到普通 ViT 编码器中,进一步强化 SAM 的局部先验假设。
原创
发布博客 2024.05.20 ·
368 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

分割模型部件——将gt用边界在原始图像上展示,将pred用掩膜在原始图像上展示

在论文可视化结果时,简介明了的展示我们自己模型的分割结果与gt的区别是十分重要的,因此这里记录一下自己的可视化方式。因为大多数操作都是基于cv2进行的,因此你需要保持输入图像的h,w,c的顺序,RGB的顺序等。没办法贴全自己的所有代码,因此以下代码建议各位借助Chat-GTP学透了再使用,不可盲目使用。
原创
发布博客 2024.05.16 ·
547 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

logger使用,解决中文乱码问题,重复缓存问题

在模型训练过程中,想把控制台内容输出的内容缓存起来,以便后期检查使用,就用起了logger。用的时候遇到过中文乱码问题以及重复缓存问题(模块时,如果实例化了多个 loggers 并且日志处理器没有被正确地移除,可能会导致日志数据重复。在 Python 中使用。
原创
发布博客 2024.05.16 ·
773 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

数据处理——avi视频数据转png图片格式代码,mat转png图片格式代码,图片裁剪成固定大小代码。

数据处理代码
原创
发布博客 2024.04.28 ·
1053 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

Swin-UMamba—基于 Mamba 的 UNet 和基于 ImageNet 的预训练—论文精读和代码实践

准确的医学图像分割需要集成多尺度信息从局部特征到全局依赖性。然而,现有方法对远程全局信息进行建模具有挑战性,其中卷积神经网络(CNN)受到其局部感受野的限制,而视觉变换器(ViT)则受到其注意力机制的高二次复杂度的影响。最近,基于 Mamba 的模型因其在长序列建模方面令人印象深刻的能力而受到极大关注。多项研究表明,这些模型在各种任务中都可以优于流行的视觉模型,提供更高的准确性、更低的内存消耗和更少的计算负担。
原创
发布博客 2024.03.06 ·
6147 阅读 ·
9 点赞 ·
10 评论 ·
58 收藏

图像预处理——将img和mask根据自己的要求同时裁剪——matlab代码

超声的原始图像不仅包含了用于诊断的信息,还掺杂了诸如机器型号、日期等不相关的信息。为了确保后续神经网络分割的准确性和有效性,需要对这些无关信息进行裁剪,仅保留与分割任务直接相关的img和mask部分。这样既能优化数据处理流程,又能提升后续分析的精准度。
原创
发布博客 2024.03.05 ·
682 阅读 ·
5 点赞 ·
0 评论 ·
2 收藏

nn.Linear() 使用提醒

原本以为它是和nn.Conv2d()一样,就看第二个维度的数值,今天才知道,它是只看最后一个维度的数值!!!
原创
发布博客 2024.02.27 ·
699 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏
加载更多