2020研究生数学建模竞赛C题——面向康复工程的脑电信号分析和判别模型——论文研读

本文探讨了三种机器学习方法——SVM、CNN和主成分分析(PCA)在实际应用中的行文结构和模板。内容涵盖了数据预处理的归一化,不平衡分类问题的评价指标,以及SVM和CNN模型的实现细节。同时,介绍了PAC主成分分析法和改进的K-means聚类方法,为读者提供了实用的算法模板和思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行文结构,CNN行文模板,主成分分析行文模板,SVM行文模板
文章出自 20102840089,仅供学习,侵删

1 行文结构

在这里插入图片描述

这里在进行问题求解时,是使用三种方法进行对比实验,这个和以前自己参加的省赛有点不同,我们最后是还有一个模型检验,将使用不同的方法对问题求解的正确性进行论证,但是现在看来,通过上图的行文结构,可能更加清爽一点,可操作性也更多。

2 数据处理归一化

在这里插入图片描述

在深度学习中会经常使用到的归一化BN数据操作,这里是通过表格和伪代码的形式给出的,可以借鉴一下,避免直接堆砌公式。

3 不平衡分类问题评价指标

在这里插入图片描述

这里是针对不平衡分类中常常使用的评价指标,有召回率,准确率等等,用到可以借鉴该行文思路。

4 SVM行文模板

在这里插入图片描述

作为最经典的机器学习方法,在现有的sklearn中都封装了现有的模型,我们需要做的是,对数据进行处理操作,比如读入数据,将数据的横纵轴分开,针对不同的变量进行数据抽离,这样才可以较为轻松的将数据传入模型中。

5 CNN架构行文模板

在这里插入图片描述
在这里插入图片描述

这一块是将CNN的运算逻辑都写出来了,从前向传播到反向传播,再到loss计算等,都通过公式的方式写下来了,后期用到也是可以直接搬过来用的。

6 PAC主成分分析法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

将当前的主成分分析法通过公式的方式展示出来,并且最后通过热力图的形式进行可视化,可以借鉴一下,画图是origin或者是matplotlib包。

7 聚类方法

在这里插入图片描述
在这里插入图片描述

使用的是改进后的K-means聚类方法,可以借鉴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值