Affinity Feature Strengthening for Accurate, Complete and Robust Vessel Segmentation

1 DataSets

1.1 XCAD angiography coronary artery disease

数量 126张,84 training 42 test
分辨率: 512*512

1.2 DRIVE retinal vessel seg429 mentation dataset

数量: 40张 20training 20 test
分辨率: 565*584

1.3 PV Portal vein vessel dataset

属性: in-house
数量: 32张 24training 8test
分辨率: 352**352~448*448

1.4 DSA digital subtraction angiography cerebrovas cular vessel

属性: in-house
数量: 20张
分辨率: 512*512

2 Data Aaugment

水平翻转
随机亮度和对比度范围从 1.0 到 2.1
随机饱和度范围从 0.5 到 1.5
并以 90°、180° 和 270° 随机旋转
然后裁剪为 256×256 像素进行训练

3 Initialization

Optimizer: Adam
lr_Schedule: lr=0.001, Decay=0.0005
Batch_Size: 2
Epoch: 2000

4 Comparison

4.1 Comparison Range

Datasets: XCAD, DRIVE and PV.
Pixel-level: CS2Net
Topology-level: TopoNet
hybrid-level: JTFN
affinity field feature learning: AAF

4.2 Comparison Results

在这里插入图片描述

5 Ablation Study

在这里插入图片描述

6 Other Work

6.1 Evaluation of vessel segmentation with varying sizes

each thin vessel is assigned with a 5_piexl searching
but each thick use 10-piexl to search
results:
在这里插入图片描述

6.2 Robustness to contrast changes

For XCADratio is range [1.7,1.6,1.5,0.9,0.85,0.8], and for DRIVE is range [1.3,1.2,1.1,0.4,0.3,0.2], and the result as follew
Results:
在这里插入图片描述
Reasons:

Though image contrast can change across different sit584 uations, the semantic and geometric structure relationships 585 among pixels should be consistent and this information in 586 turn makes AFN more robust against absolute pixel intensity 587 change.

6.3 Evaluation of generalizability

Way:

Apply the models trained on XCAD to the DSA dataset for testing

Results:
在这里插入图片描述

7 Conclusion

The cores of our AFN are one SMAFS and three UAFS modules which utilize affinity fields to encode semantic relationships as the topology constraint for the segmentation feature enhancement

Core Ways

affinity feature strengthening network(AFN)

SMAFS_one

supervised multi-scale affinity feature strengthening
which use 3*3、 5** 5、9 * 9 pixels to caputer different information.
it is used to combine the last result

UAFS_three

unsupervised affinity feature strengthening
it is deployed to predict affinity relationships aamong pixels in different layers for feature enhancement, each VGG16 layer correspond UAFS.
it only in the 3*3 scale to fuse the segmentation features

Overview of our framework

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值