Codeup——621 | 问题 C: 最短路径

题目描述

N个城市,标号从0到N-1,M条道路,第K条道路(K从0开始)的长度为2^K,求编号为0的城市到其他城市的最短距离。

输入

第一行两个正整数N(2<=N<=100)M(M<=500),表示有N个城市,M条道路,
接下来M行两个整数,表示相连的两个城市的编号。

输出

N-1行,表示0号城市到其他城市的最短路,如果无法到达,输出-1,数值太大的以MOD 100000 的结果输出。

样例输入

4 3
0 1
1 2
2 0

样例输出

1
3
-1

注意:还有一种方法,大整数操作

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXV = 520;
const int INF = 1000000000;
const int MOD = 100000;
int n, m, G[MAXV][MAXV], father[MAXV];
int d[MAXV];
bool vis[MAXV] = {0};

int mod(int a, int b) {
	int num = 1;
	while(b--) num = (num * a) % MOD;
	return num;
}

void Dijkstra(int s) {
	fill(d, d + MAXV, INF);
	d[s] = 0;
	for(int i = 0; i < n; i++) {
		int u = -1, MIN = INF;
		for(int j = 0; j < n; j++) {
			if(!vis[j] && d[j] < MIN) {
				u = j;
				MIN = d[j]; 
			}
		}
		if(u == -1) return;
		vis[u] = true;
		for(int v = 0; v < n; v++) {
			if(!vis[v] && G[u][v] != INF && d[u] + G[u][v] < d[v])
				d[v] = G[u][v] + d[u];
		}
	}
}

void init() {
	for(int i = 0; i < MAXV; i++) father[i] = i;
}

int findFather(int x) {
	if(x == father[x]) return x;
	else {
		int F = findFather(father[x]);
		father[x] = F;
		return F;
	}
}

int main()
{
	while(cin >> n >> m) {
		int a, b;
		init();
		fill(G[0], G[0] + MAXV * MAXV, INF);
		fill(vis, vis + MAXV, 0);
		for(int i = 0; i < m; i++) {
			scanf("%d %d", &a, &b);
			int Fa = findFather(a);
			int Fb = findFather(b);
			if(Fa != Fb) father[Fa] = Fb;
			else continue;
			G[a][b] = mod(2, i);
			G[b][a] = G[a][b];
		}
		Dijkstra(0);
		for(int i = 1; i < n; i ++) 
			printf("%d\n", d[i] == INF ? -1 : d[i] % MOD);
	}
	return 0;
}
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值