题目描述
有n个城市m条道路(n<1000, m<10000),每条道路有个长度,请找到从起点s到终点t的最短距离和经过的城市名。
输入
输入包含多组测试数据。
每组第一行输入四个数,分别为n,m,s,t。
接下来m行,每行三个数,分别为两个城市名和距离。
输出
每组输出占两行。
第一行输出起点到终点的最短距离。
第二行输出最短路径上经过的城市名,如果有多条最短路径,输出字典序最小的那条。若不存在从起点到终点的路径,则输出“can’t arrive”。
样例输入
3 3 1 3
1 3 3
1 2 1
2 3 1
样例输出
2
1 2 3
注意:1、此题巨坑,说是说n < 1000,但是测试数据里的n可以等于1000,这就意味着此题只能用邻接表,不能使用邻接矩阵,否则不会对的,因为n可以为1000.
2、多组测试数据,要考虑全面,该初始化的数据全部都初始化。
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXV = 1010;
const int INF = 1000000000;
struct node {
int v, dis;
node (int _v, int _dis) : v(_v), dis(_dis) {};
};
int n, m, st, ed;
int d[MAXV];
vector<int> pre[MAXV], tmpPath, path;
vector<node> Adj[MAXV];
bool vis[MAXV] = {0};
void Dijkstra (int s) {
fill(d, d + MAXV, INF);
d[s] = 0;
for(int i = 0; i < n; i++) {
int u = -1, MIN = INF;
for(int j = 1; j <= n; j++) {
if(!vis[j] && d[j] < MIN) {
u = j;
MIN = d[j];
}
}
if(u == -1) return;
vis[u] = true;
for(int j = 0; j < Adj[u].size(); j++) {
int v = Adj[u][j].v, dis = Adj[u][j].dis;
if(!vis[v]) {
if(d[u] + dis < d[v]) {
d[v] = d[u] + Adj[u][j].dis;
pre[v].clear();
pre[v].push_back(u);
} else if(d[u] + dis == d[v]) {
pre[v].push_back(u);
}
}
}
}
}
void DFS(int v) {
if(v == st) {
tmpPath.push_back(v);
if(path.size() == 0)
path = tmpPath;
else
if(tmpPath < path) path = tmpPath;
tmpPath.pop_back();
return;
}
tmpPath.push_back(v);
for(int i = 0; i < pre[v].size(); i++) DFS(pre[v][i]);
tmpPath.pop_back();
}
int main()
{
while(scanf("%d%d%d%d", &n, &m, &st, &ed) != EOF) {
int a, b, l;
fill(vis, vis + MAXV, 0);
path.clear();
for (int i = 1;i <= n; i++) Adj[i].clear();
for(int i = 0; i < m; i++) {
scanf("%d%d%d", &a, &b, &l);
Adj[b].push_back(node(a, l));
Adj[a].push_back(node(b, l));
}
Dijkstra(st);
DFS(ed);
if(path.size() == 0) cout << "can't arrive" << endl;
else {
cout << d[ed] << endl;
for(int i = path.size() - 1; i >= 0; i--) printf("%s%d", i == path.size() - 1 ? "" : " ", path[i]);
}
cout << endl;
}
return 0;
}
985

被折叠的 条评论
为什么被折叠?



