题目描述
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
输入
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点t。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
输出
输出 一行有两个数, 最短距离及其花费。
样例输入
3 2
1 2 5 6
2 3 4 5
1 3
0 0
样例输出
9 11
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXV = 1010;
const int INF = 1000000000;
struct node {
int v, dis;
node (int _v, int _dis) : v(_v), dis(_dis){};
};
int n, m, st, ed, cost[MAXV][MAXV];
vector<node> Adj[MAXV];
bool vis[MAXV] = {0};
int d[MAXV], c[MAXV];
void Dijkstra(int s) {
fill(d, d + MAXV, INF);
fill(vis, vis + MAXV, 0);
fill(c, c + MAXV, INF);
d[s] = 0;
c[s] = 0;
for(int i = 0; i < n; i++) {
int u = -1, MIN = INF;
for(int j = 1; j <= n; j++) {
if(!vis[j] && d[j] < MIN) {
u = j;
MIN = d[j];
}
}
if(u == -1) return;
vis[u] = true;
for(int j = 0; j < Adj[u].size(); j++) {
int v = Adj[u][j].v, dis = Adj[u][j].dis;
if(!vis[v]) {
if(d[u] + dis < d[v]) {
d[v] = d[u] + dis;
c[v] = c[u] + cost[u][v];
} else if(d[u] + dis == d[v] && c[u] + cost[u][v] < c[v]) {
c[v] = c[u] + cost[u][v];
}
}
}
}
}
int main()
{
while(scanf("%d%d", &n, &m), n != 0 && m != 0) {
int a, b, l, p;
for(int i = 0; i < MAXV; i++) Adj[i].clear();
for(int i = 0; i < m; i++) {
scanf("%d%d%d%d", &a, &b, &l, &p);
Adj[a].push_back(node(b, l));
Adj[b].push_back(node(a, l));
cost[a][b] = p;
cost[b][a] = p;
}
scanf("%d%d", &st, &ed);
Dijkstra(st);
printf("%d %d\n", d[ed], c[ed]);
}
return 0;
}
本文介绍了一个基于Dijkstra算法的改进版本,用于解决给定图中从起点到终点的最短路径问题,并在存在多条等长路径时选择总成本最低的路径。该算法适用于带权无向图。
177

被折叠的 条评论
为什么被折叠?



