Codeup——621 | 问题 E: 最短路径问题

本文介绍了一个基于Dijkstra算法的改进版本,用于解决给定图中从起点到终点的最短路径问题,并在存在多条等长路径时选择总成本最低的路径。该算法适用于带权无向图。
摘要由CSDN通过智能技术生成

题目描述

给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

输入

输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点t。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)

输出

输出 一行有两个数, 最短距离及其花费。

样例输入

3 2
1 2 5 6
2 3 4 5
1 3
0 0

样例输出

9 11
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXV = 1010;
const int INF = 1000000000;
struct node {
	int v, dis;
	node (int _v, int _dis) : v(_v), dis(_dis){};
}; 

int n, m, st, ed, cost[MAXV][MAXV];
vector<node> Adj[MAXV];
bool vis[MAXV] = {0};
int d[MAXV], c[MAXV];

void Dijkstra(int s) {
	fill(d, d + MAXV, INF);
	fill(vis, vis + MAXV, 0);
	fill(c, c + MAXV, INF);
	d[s] = 0;
	c[s] = 0;
	for(int i = 0; i < n; i++) {
		int u = -1, MIN = INF;
		for(int j = 1; j <= n; j++) {
			if(!vis[j] && d[j] < MIN) {
				u = j;
				MIN = d[j];
			}
		}
		if(u == -1) return;
		vis[u] = true;
		for(int j = 0; j < Adj[u].size(); j++) {
			int v = Adj[u][j].v, dis = Adj[u][j].dis;
			if(!vis[v]) {
				if(d[u] + dis < d[v]) {
					d[v] = d[u] + dis;
					c[v] = c[u] + cost[u][v];
				} else if(d[u] + dis == d[v] && c[u] + cost[u][v] < c[v]) {
					c[v] = c[u] + cost[u][v];
				}
			}
		}
	}
}

int main()
{
	while(scanf("%d%d", &n, &m), n != 0 && m != 0) {
		int a, b, l, p;
		for(int i = 0; i < MAXV; i++) Adj[i].clear();
		for(int i = 0; i < m; i++) {
			scanf("%d%d%d%d", &a, &b, &l, &p);
			Adj[a].push_back(node(b, l));
			Adj[b].push_back(node(a, l));
			cost[a][b] = p;
			cost[b][a] = p;
		}
		scanf("%d%d", &st, &ed);
		Dijkstra(st);
		printf("%d %d\n", d[ed], c[ed]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值