题目描述
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
输入
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
输出
对每个测试用例,在1行里输出最小的公路总长度。
样例输入
8
1 2 42
1 3 68
1 4 35
1 5 1
1 6 70
1 7 25
1 8 79
2 3 59
2 4 63
2 5 65
2 6 6
2 7 46
2 8 82
3 4 28
3 5 62
3 6 92
3 7 96
3 8 43
4 5 28
4 6 37
4 7 92
4 8 5
5 6 3
5 7 54
5 8 93
6 7 83
6 8 22
7 8 17
0
样例输出
82
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXV = 110;
const int MAXE = 10010;
struct edge {
int u, v;
int cost;
}E[MAXE];
bool cmp(edge a, edge b) {
return a.cost < b.cost;
}
int father[MAXV];
int findFather(int i) {
if(father[i] == i) return i;
else {
int F = findFather(father[i]);
father[i] = F;
return F;
}
}
int kruscal(int n, int m) {
int ans = 0, numEdge = 0;
for(int i = 1; i <= n; i++) father[i] = i;
sort(E, E + m, cmp);
for(int i = 0; i < m; i++) {
int Fu = findFather(E[i].u);
int Fv = findFather(E[i].v);
if(Fu != Fv) {
ans += E[i].cost;
numEdge++;
father[Fu] = Fv;
if(numEdge == n - 1) break;
}
}
if(numEdge != n - 1) return -1;
else return ans;
}
int main()
{
int n;
while(scanf("%d", &n), n != 0) {
int m = n * (n - 1) / 2;
for(int i = 0; i < m; i++) {
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].cost);
}
cout << kruscal(n, m) << endl;
}
return 0;
}
728

被折叠的 条评论
为什么被折叠?



