Codeup——622 | 问题 A: 还是畅通工程(稀疏图,Kruscal算法求最小生成树)

题目描述

某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。

输入

测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。

输出

对每个测试用例,在1行里输出最小的公路总长度。

样例输入

8
1 2 42
1 3 68
1 4 35
1 5 1
1 6 70
1 7 25
1 8 79
2 3 59
2 4 63
2 5 65
2 6 6
2 7 46
2 8 82
3 4 28
3 5 62
3 6 92
3 7 96
3 8 43
4 5 28
4 6 37
4 7 92
4 8 5
5 6 3
5 7 54
5 8 93
6 7 83
6 8 22
7 8 17
0

样例输出

82
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXV = 110;
const int MAXE = 10010;

struct edge {
	int u, v;
	int cost;
}E[MAXE];

bool cmp(edge a, edge b) {
	return a.cost < b.cost;
}

int father[MAXV];
int findFather(int i) {
	if(father[i] == i) return i;
	else {
		int F = findFather(father[i]);
		father[i] = F;
		return F;
	}
}

int kruscal(int n, int m) {
	int ans = 0, numEdge = 0;
	for(int i = 1; i <= n; i++) father[i] = i;
	sort(E, E + m, cmp);
	for(int i = 0; i < m; i++) {
		int Fu = findFather(E[i].u);
		int Fv = findFather(E[i].v);
		if(Fu != Fv) {
			ans += E[i].cost;
			numEdge++;
			father[Fu] = Fv;
			if(numEdge == n - 1) break;
		}
	}
	if(numEdge != n - 1) return -1;
	else return ans;
}

int main()
{
	int n;
	while(scanf("%d", &n), n != 0) {
		int m = n * (n - 1) / 2;
		for(int i = 0; i < m; i++) {
			scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].cost);
		}
		cout << kruscal(n, m) << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值