Codeup——622 | 问题 B: Freckles

本文介绍了一种利用Prim算法解决连接多个点以最小化总连线长度的问题。通过计算平面上各点间的距离,并运用Prim算法找出最小生成树,从而实现用最少的‘墨水’将所有点连接起来的目标。
摘要由CSDN通过智能技术生成

题目描述

In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad’s back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley’s engagement falls through.
Consider Dick’s back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.

输入

The first line contains 0 < n <= 100, the number of freckles on Dick’s back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.

输出

Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.

样例输入

3
2723.62 7940.81
8242.67 11395.00
4935.54 6761.32
9
10519.52 11593.66
12102.35 2453.15
7235.61 10010.83
211.13 4283.23
5135.06 1287.85
2337.48 2075.61
6279.72 13928.13
65.79 1677.86
5324.26 125.56
0

样例输出

8199.56
32713.73

思路:求出每个点到点之间的距离,最后用Kruscal或者是Prim算法求出最小生成树即可,但是在Codeup上过不了,在牛客网上可以过,应该是精度的问题,第二个笔者的答案是32713.74,上网测试过很多博主的代码,答案都是这个。

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXV = 110;
const double INF = 1000000000;
int n;
double d[MAXV], G[MAXV][MAXV];
bool vis[MAXV] = {0};

struct node {	//点的坐标
	double x, y;
}weight[MAXV];

double getLength(node a, node b) {	//获取点与点之间的距离
	return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}

double prim() {
	fill(d, d + MAXV, INF);
	double ans = 0;
	d[0] = 0;
	for(int i = 0; i < n; i++) {
		int u = -1;
		double MIN = INF;
		for(int j = 0; j < n; j++) {
			if(!vis[j] && d[j] < MIN) {
				MIN = d[j];
				u = j;
			}
		}
		if(u == -1) return -1;
		vis[u] = true;
		ans += d[u];
		for(int v = 0; v < n; v++) {
			if(!vis[v] && G[u][v] < d[v]) d[v] = G[u][v];
		}
	} 
	return ans;
} 

int main()
{
	while(scanf("%d", &n), n != 0) {
		fill(G[0], G[0] + MAXV * MAXV, INF);
		fill(vis, vis + MAXV, 0);
		for(int i = 0; i < n; i++) 
			scanf("%lf%lf", &weight[i].x, &weight[i].y);
		for(int i = 0; i < n - 1; i++)
			for(int j = i + 1; j < n; j++) {
				G[i][j] = getLength(weight[i], weight[j]);
				G[j][i] = G[i][j];
			}
		printf("%.2lf\n", prim());
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值