题目描述
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
输入
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M (N, M < =100 );随后的 N 行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
输出
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
样例输入
3 4
1 2 1
2 3 2
3 4 3
2 4
1 2 1
3 4 2
0 5
样例输出
6
?
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXV = 110;
const int MAXE = 10010;
int father[MAXV];
struct edge {
int u, v;
int cost;
}E[MAXE];
bool cmp(edge a, edge b) {
return a.cost < b.cost;
}
int findFather(int i) {
if(father[i] == i) return i;
else {
int F = findFather(father[i]);
father[i] = F;
return F;
}
}
int kruscal(int n, int m) {
int ans = 0, numEdge = 0;
for(int i = 1; i <= n; i++) father[i] = i;
sort(E, E + m, cmp);
for(int i = 0; i < m; i++) {
int Fu = findFather(E[i].u);
int Fv = findFather(E[i].v);
if(Fu != Fv) {
ans += E[i].cost;
numEdge++;
father[Fu] = Fv;
if(numEdge == n -1) break;
}
}
if(numEdge != n - 1) return -1;
else return ans;
}
int main()
{
int m, n;
while(scanf("%d%d", &m, &n), m != 0) {
for(int i = 0; i < m; i++)
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].cost);
if(kruscal(n, m) == -1) printf("?\n");
else printf("%d\n", kruscal(n, m));
}
return 0;
}
782

被折叠的 条评论
为什么被折叠?



