Codeup——622 | 问题 D: 继续畅通工程

题目描述

省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全省畅通需要的最低成本。

输入

测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( 1< N < 100 );随后的 N(N-1)/2 行对应村庄间道路的成本及修建状态,每行给4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态:1表示已建,0表示未建。

当N为0时输入结束。

输出

每个测试用例的输出占一行,输出全省畅通需要的最低成本。

样例输入

4
1 2 1 1
1 3 6 0
1 4 2 1
2 3 3 0
2 4 5 0
3 4 4 0
3
1 2 1 1
2 3 2 1
1 3 1 0
0

样例输出

3
0
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXV = 110;
const int MAXE = 10010;
int father[MAXV];

struct edge {
	int u, v;
	int cost, flag;
}E[MAXE];

bool cmp(edge a, edge b) {
	return a.cost < b.cost;
}

int findFather(int i) {
	if(father[i] == i) return i;
	else {
		int F = findFather(father[i]);
		father[i] = F;
		return F;
	} 
}

int kruscal(int n, int m) {
	int ans = 0, numEdge = 0;
	for(int i = 1; i <= n; i++) father[i] = i;
	sort(E, E + m, cmp);
	for(int i = 0; i < m; i++) {
		int Fu = findFather(E[i].u);
		int Fv = findFather(E[i].v);
		if(Fu != Fv) {
			father[Fu] = Fv;
			numEdge++;
			ans += E[i].cost;
			if(numEdge == n - 1) break;
		}
		
	}
	if(numEdge != n - 1) return -1;
	else return ans;
}

int main()
{
	int n;
	while(scanf("%d", &n), n != 0) {
		int m = n * (n - 1) / 2;
		for(int i = 0; i < m; i++) {
			scanf("%d%d%d%d", &E[i].u, &E[i].v, &E[i].cost, &E[i].flag);
			if(E[i].flag == 1) E[i].cost = 0;
		}
		printf("%d\n", kruscal(n, m));
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值