题目描述
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全省畅通需要的最低成本。
输入
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( 1< N < 100 );随后的 N(N-1)/2 行对应村庄间道路的成本及修建状态,每行给4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态:1表示已建,0表示未建。
当N为0时输入结束。
输出
每个测试用例的输出占一行,输出全省畅通需要的最低成本。
样例输入
4
1 2 1 1
1 3 6 0
1 4 2 1
2 3 3 0
2 4 5 0
3 4 4 0
3
1 2 1 1
2 3 2 1
1 3 1 0
0
样例输出
3
0
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXV = 110;
const int MAXE = 10010;
int father[MAXV];
struct edge {
int u, v;
int cost, flag;
}E[MAXE];
bool cmp(edge a, edge b) {
return a.cost < b.cost;
}
int findFather(int i) {
if(father[i] == i) return i;
else {
int F = findFather(father[i]);
father[i] = F;
return F;
}
}
int kruscal(int n, int m) {
int ans = 0, numEdge = 0;
for(int i = 1; i <= n; i++) father[i] = i;
sort(E, E + m, cmp);
for(int i = 0; i < m; i++) {
int Fu = findFather(E[i].u);
int Fv = findFather(E[i].v);
if(Fu != Fv) {
father[Fu] = Fv;
numEdge++;
ans += E[i].cost;
if(numEdge == n - 1) break;
}
}
if(numEdge != n - 1) return -1;
else return ans;
}
int main()
{
int n;
while(scanf("%d", &n), n != 0) {
int m = n * (n - 1) / 2;
for(int i = 0; i < m; i++) {
scanf("%d%d%d%d", &E[i].u, &E[i].v, &E[i].cost, &E[i].flag);
if(E[i].flag == 1) E[i].cost = 0;
}
printf("%d\n", kruscal(n, m));
}
return 0;
}
350

被折叠的 条评论
为什么被折叠?



