Codeup——622 | 问题 A: Fibonacci (动态规划——记忆搜索)

本文介绍了一种使用动态规划方法计算斐波那契数列的程序实现方案。通过递归函数结合缓存技术避免重复计算,显著提高了计算效率。
摘要由CSDN通过智能技术生成

题目描述

The Fibonacci Numbers{0,1,1,2,3,5,8,13,21,34,55…} are defined by the recurrence:
F0=0 F1=1 Fn=Fn-1+Fn-2,n>=2
Write a program to calculate the Fibonacci Numbers.

输入

Each case contains a number n and you are expected to calculate Fn.(0<=n<=30) 。

输出

For each case, print a number Fn on a separate line,which means the nth Fibonacci Number.

样例输入

1

样例输出

1
#include <iostream>
#include <algorithm>
using namespace std;

int dp[32];

int f(int n) {
	if(n == 0) return 0;
	if(n == 1) return 1;
	if(dp[n] != -1) return dp[n];
	dp[n] = f(n - 1) + f(n - 2);
	return dp[n];
}

int main()
{
	int n;
	fill(dp, dp + 32, -1);
	while(cin >> n)
		cout << f(n) << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值