Codeup——626 | 问题 A: 最大连续子序列

题目描述

给定K个整数的序列{ N1, N2, …, NK },其任意连续子序列可表示为{ Ni, Ni+1, …, Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。

输入

测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K<= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。

输出

对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

样例输入

5
-3 9 -2 5 -4
3
-2 -3 -1
0

样例输出

12 9 5
0 -2 -1

思路:令dp[i]表示以A[i]为末尾的连续序列中的最大和
dp方程为: dp[i] = max(A[i], dp[i - 1] + A[i]);

#include <iostream>
#include <algorithm>
using namespace std;

int main() 
{
	int n;
	while(scanf("%d", &n), n != 0) {
		int dp[10010], a[10010], k, m, flag = 1;
		for(int i = 0; i < n; i++) {
			scanf("%d", &a[i]);
			if(a[i] > 0) flag = 0;
		}
		dp[0] = a[0]; m = a[0]; k = 0;
		for(int i = 1; i < n; i++) dp[i] = max(a[i], dp[i - 1] + a[i]);
		for(int i = 0; i < n; i++) 
			if(dp[i] > m) {
				m = dp[i];
				k = i;
			}
		int p, q = a[k], sum = 0;
		for(int i = k; i >= 0; i--) {
			sum += a[i];
			if(sum == dp[k]) {
				p = i;
				break;
			}
		}
		if(flag) printf("0 %d %d\n", a[0], a[n - 1]);
		else printf("%d %d %d\n", dp[k], a[p], q);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值