题目描述
给定K个整数的序列{ N1, N2, …, NK },其任意连续子序列可表示为{ Ni, Ni+1, …, Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。
输入
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K<= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。
输出
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
样例输入
5
-3 9 -2 5 -4
3
-2 -3 -1
0
样例输出
12 9 5
0 -2 -1
思路:令dp[i]表示以A[i]为末尾的连续序列中的最大和
dp方程为: dp[i] = max(A[i], dp[i - 1] + A[i]);
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int n;
while(scanf("%d", &n), n != 0) {
int dp[10010], a[10010], k, m, flag = 1;
for(int i = 0; i < n; i++) {
scanf("%d", &a[i]);
if(a[i] > 0) flag = 0;
}
dp[0] = a[0]; m = a[0]; k = 0;
for(int i = 1; i < n; i++) dp[i] = max(a[i], dp[i - 1] + a[i]);
for(int i = 0; i < n; i++)
if(dp[i] > m) {
m = dp[i];
k = i;
}
int p, q = a[k], sum = 0;
for(int i = k; i >= 0; i--) {
sum += a[i];
if(sum == dp[k]) {
p = i;
break;
}
}
if(flag) printf("0 %d %d\n", a[0], a[n - 1]);
else printf("%d %d %d\n", dp[k], a[p], q);
}
return 0;
}
373

被折叠的 条评论
为什么被折叠?



