Codeup——627 | 问题 A: 最大连续子序列

本文介绍了一种求解最长上升子序列问题的算法实现,通过动态规划的方法找到给定序列中最长的按升序排列的子序列。该算法利用了一个一维数组dp来存储以每个元素结尾的最长上升子序列的长度。
摘要由CSDN通过智能技术生成

题目描述

一个数列ai如果满足条件a1 < a2 < … < aN,那么它是一个有序的上升数列。我们取数列(a1, a2, …, aN)的任一子序列(ai1, ai2, …, aiK)使得1 <= i1 < i2 < … < iK <= N。例如,数列(1, 7, 3, 5, 9, 4, 8)的有序上升子序列,像(1, 7), (3, 4, 8)和许多其他的子序列。在所有的子序列中,最长的上升子序列的长度是4,如(1, 3, 5, 8)。

现在你要写一个程序,从给出的数列中找到它的最长上升子序列。

输入

输入包含两行,第一行只有一个整数N(1 <= N <= 1000),表示数列的长度。

第二行有N个自然数ai,0 <= ai <= 10000,两个数之间用空格隔开。

输出

输出只有一行,包含一个整数,表示最长上升子序列的长度。

样例输入

7
1 7 3 5 9 4 8

样例输出

4

思路:令dp[i]表示以a[i]结尾的最长不下降子序列长度
状态转移方程为:dp[i] = max(1, dp[j] + 1)
条件为:dp[j] + 1 > dp[i] && a[i] >= a[j]

#include <iostream>
#include <algorithm>
using namespace std;

int main()
{
	int a[1010], n, dp[1010];
	cin >> n;
	for(int i = 0; i < n; i++) 
		scanf("%d", &a[i]);
	int ans = -1;
	for(int i = 0; i < n; i++) {
		dp[i] = 1;
		for(int j = 0; j < i; j++)
			if(a[i] >= a[j] && dp[j] + 1 > dp[i])
				dp[i] = dp[j] + 1;
		ans = max(dp[i], ans);
	}
	cout << ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值