学习任务:
回溯法

- 虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法。
因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质 - 一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
- 回溯法解决的问题都可以抽象为树形结构。集合的大小就构成了树的宽度,递归的深度就构成了树的深度。递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)
- 回溯法的模板:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
Leetcode77. 组合
难度:中等 | 相关标签:回溯
-
题目: 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。 -
思路:

-
注意:
- 可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了
- 可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
-
代码:
class Solution {
// 存放符合条件结果的集合
List<List<Integer>> result= new ArrayList<>();
// 用来存放符合条件单一结果
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
backtracking(n,k,1);
return result;
}
public void backtracking(int n,int k,int startIndex){
if(path.size() == k){
result.add(new ArrayList<>(path));
return;
}
for(int i = startIndex; i <= n; i++){
path.add(i); // 处理节点
backtracking(n,k,i+1); // 递归
path.removeLast(); // 回溯,撤销处理的节点
}
}
}
剪枝操作后
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置
- 反思:
Leetcode216.组合总和III
难度:中等 | 相关标签:数组、回溯
- 题目: 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:
- 只使用数字1到9
- 每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。
-
思路:

-
注意:
-
代码:
class Solution {
List<List<Integer>> result= new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
backtracking(n, k, 0, 1);
return result;
}
public void backtracking(int n, int k, int sum, int startIndex){
// 剪枝
if(sum > n){
return;
}
if(path.size() == k && n == sum){
result.add(new ArrayList<>(path));
return;
}
// 剪枝 9 - (k - path.size()) + 1
for(int i = startIndex; i <= 9 - (k - path.size()) + 1 ; i++){
sum = sum + i;
path.add(i);
backtracking(n, k, sum, i+1);
sum = sum - i;
path.removeLast();
}
}
}
- 反思:
Leetcode17.电话号码的字母组合
难度:中等 | 相关标签:哈希表、字符串、回溯
-
题目: 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 -
思路:
-
注意:
-
代码:
class Solution {
//设置全局列表存储最后的结果
List<String> list = new ArrayList<>();
public List<String> letterCombinations(String digits) {
if (digits == null || digits.length() == 0) {
return list;
}
//初始对应所有的数字,为了直接对应2-9,新增了两个无效的字符串""
String[] numString = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
//迭代处理
backTracking(digits, numString, 0);
return list;
}
//每次迭代获取一个字符串,所以会涉及大量的字符串拼接,所以这里选择更为高效的 StringBuilder
StringBuilder temp = new StringBuilder();
//比如digits如果为"23",num 为0,则str表示2对应的 abc
public void backTracking(String digits, String[] numString, int num) {
//遍历全部一次记录一次得到的字符串
if (num == digits.length()) {
list.add(temp.toString());
return;
}
//str 表示当前num对应的字符串
String str = numString[digits.charAt(num) - '0'];
for (int i = 0; i < str.length(); i++) {
temp.append(str.charAt(i));
//递归,处理下一层
backTracking(digits, numString, num + 1);
//剔除末尾的继续尝试
temp.deleteCharAt(temp.length() - 1);
}
}
}
- 反思:
1万+

被折叠的 条评论
为什么被折叠?



