AcWing算法基础课(一)基础算法

本文详细介绍了算法基础课程中的排序算法,包括快速排序和归并排序,强调了分治思想在排序中的应用。此外,还讨论了二分搜索的两种形式及其操作细节。同时,文章涵盖了高精度计算的基本操作,如大整数的加减乘除,并提供了相应的模板。最后,提到了前缀和、差分、双指针算法、位运算、离散化和区间合并等重要概念及其应用场景。
摘要由CSDN通过智能技术生成

1.1 排序

  • 快速排序
  • 归并排序

快速排序(不稳定的排序)

分治思想

步骤(对左边界为l,右边界为r的一段数进行排序):

  1. 确定分界点:q[l], q[(l + r) / 2], q[r], 随机值
  2. 调整区间(重点):通过x对区间进行划分,使得左边区间都≤x,右边区间都≥x(左右区间不一定相等)
  3. 递归处理左右两个区间

调整区间的方式:

  1. 设置两个指针i,j分别指向区间的左右两个元素
  2. i指针向右移动,直至其指向的元素≥x,停下
  3. j指针向左移动,直至其指向的元素≤x,停下
  4. 交换i,j所指向的元素(两个指针分别向中间移动一位)
  5. 若i和j相遇,结束;否则跳至步骤2

一个模板:

void quick_sort(int q[], int l, int r) {
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while (i < j) {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

代码解释:

第3行i和j分别先往两端偏移1的原因使每一次两个数进行交换后都需要往中间走一步,因此索性在每次执行之前就走一步,而开始需要事先向两端偏移1才能抵消该操作带来的错误影响

一个边界问题:9、10行中可以为(q, l, j)、(q, j + 1, r),这种情况x不能取q[r]和中间值上取整((l + r + 1) / 2),或者(q, l, i - 1)、(q, i, r),这种情况x不能取q[l]和中间值下取整((l + r - 1) / 2),否则都将产生死循环,如q[2] = {1, 2},若x的取值不符要求,则会发生一直执行quick)_sort(q, 0, 1)的死循环。

若需要使快排为稳定的排序,可将元素扩展成值和下标的二元组后进行排序(但无意义)

归并排序(稳定的排序)

同样是分治思想

步骤(对左边界为l,右边界为r的一段数进行排序):

  1. 确定分界点:mid = (l + r) / 2
  2. 递归排序左半部分和右半部分
  3. 归并——合二为一

主要思想(双指针):两个指针分别对应数组左半部分和右半部分(均已排好序),然后两个指针均向右移动,比较两个指针的值的大小,值小的依次放入用于存储排好序后的结果的数组(升序排序)

一个模板:

//首先定义一个与q数组类型、大小相同的数组tmp
void merge_sort(int q[], int l, int r) {
    if (l >= r) return;
    int mid = l + r >> 1;
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);
    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else tmp[k ++ ] = q[j ++ ];
    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];
    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}

1.2 二分搜索

  • 整数二分<
### 回答1: acwing算法基础课是一门针对算法学习的在线课程,在这门课程中,学生可以系统地学习和掌握算法基础知识,提高编程水平。为了方便学生学习,acwing提供了网盘服务。 acwing算法基础课网盘是一个用于存储课程资源的平台。通过这个网盘,学生可以下载课程讲义、代码模板以及补充材料等。这些资源都经过精心整理,供学生们参考和学习。 网盘中的资源是按照课程章节进行分类的,学生可以根据自己的学习需要,选择性地下载所需的资料。同时,网盘还提供了搜索功能,方便学生快速定位和获取所需资料。 acwing算法基础课网盘的使用对于学生们的学习非常有帮助。通过下载和学习这些资源,学生们可以更好地理解课程内容,加深对算法的理解。此外,学生们还可以通过研究代码模板,学习优秀的编程思想和技巧,提高自己的编程能力。 总之,acwing算法基础课网盘是一项非常便利和实用的服务,为学生们提供了更加全面和深入的学习资源,帮助他们更好地掌握和运用算法知识。 ### 回答2: acwing算法基础课是一门优质的算法学习资源,其中的课程内容丰富多样,涵盖了算法基础知识、数据结构、动态规划、图论等等。很多学习者都认为这门课程对他们的算法学习有很大的帮助。 网盘是指以网络为媒介,提供文件存储和下载服务的云存储平台。acwing算法基础课也提供了网盘服务,方便学习者下载课程资料并进行学习。 通过acwing算法基础课网盘,学习者可以方便地获取到课程的各种学习资料,包括讲义、习题集、代码示例等。这些资料可以帮助学习者更好地理解和掌握课程的内容。此外,网盘还提供了上传和分享功能,学习者可以将自己的学习心得、代码等资料分享给其他学习者,促进学习者之间的互相学习和交流。 acwing算法基础课网盘的优点不仅仅是方便快捷的下载和分享功能,还包括安全可靠的存储环境。学习者可以放心地将自己的学习资料上传到网盘进行备份,减少数据丢失的风险。同时,网盘还提供了多种存储空间容量的选择,满足学习者不同的需求。 总的来说,acwing算法基础课网盘为学习者提供了方便、安全和多样化的学习资源下载和分享服务,为学习者的算法学习和进步提供了有力的支持。如果你对算法感兴趣,我推荐你去尝试一下这门精彩的课程!
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值