ssh服务器端实现open3d对点云数据的可视化 本文介绍如何在服务器端调用open3d对点云数据进行可视化。具体的策略有:在服务器上创建一个jupyternotebook文件,在文件里使用o3d.visualization.draw_plotly方法进行可视化;将服务器上要展示的数据(点云/mesh)保存成.ply文件,在本地调用open3d进行可视化。同时演示如何将服务器上的6DoF机械臂抓取结果进行本地可视化。
pyrender库报错解决方法:‘Unable to load OpenGL library’ 解决import pyrender时出现的错误:OSError: (‘GL: cannot open shared object file: No such file or directory’, ‘GL’, None)ImportError: (‘Unable to load OpenGL library’, ‘GL: cannot open shared object file: No such file or directory’, ‘GL’, None)
一图梳理多模态领域发展简史 本文采用关系图的方式整理了:CLiP、ViLT、FLiP、ALBEF、CoCa、BLiP、VLMo、BEiT 和BEiT v3等近几年来经典的多模态大模型,以及这些工作的相互依托关系。灵感来自:跟李沐读论文系列——多模态串讲
使用广播机制将for循环转为矩阵运算 Numpy广播(broadcasting)是NumPy中用于处理形状不匹配的数组进行逐元素运算的一种机制。一般情况下,当for循环内的操作为仅为简单的四则运算,且操作对象为2个时,就可以考虑采用矩阵运算替代for循环。在构造时,需要逆向思维:将两个待求解的矩阵/数组变换成形状不匹配的状态,引发广播机制实现逐元素运算。
PyTorch多GPU训练模型——使用单GPU或CPU进行推理的方法 使用DataParallel`和DistributedDataParallel进行多GPU并行训练并报错模型,在推理阶段采用单个GPU或者CPU加载模型。加载时容易出现两种错误:IndexError: list index out of range 和 Missing key(s) in state_dict:。这时可以采用map_location=device等方法进行解决。
wandb安装方法及本地部署教程 Wandb(Weights & Biases)是一个用于跟踪、可视化和协作机器学习实验的开源工具和平台。本文总结了wandb的安装方法和本地部署方法。具体的,通过pip install wandb方法完成安装;通过wandb.init(mode="dryrun")实现本地部署。
一招解决报错:pyassimp.errors.AssimpError: assimp library not found 解决pyassimp.errors.AssimpError: assimp library not found报错问题。不需要使用CMake编译,也不需要其它特别麻烦的方法。只需要将源码安装包直接放在python存储第三方库的地方,这样就直接完成了pyassimp包的安装和编译。
PyTorch程序实现L1和L2正则项 正则化是机器学习中的一个重要概念,它可以帮助我们防止模型过拟合。在这篇文章中,我将详细介绍两种常见的正则化技术:L1和L2正则项。然后会基于PyTorch平台讲解如何向自己的网络模型中添加上述两种技术,将正则化真正为己所用!!!
讲解: 截断符号距离函数(Truncated Signed Distance Function,TSDF) 截断符号距离函数(Truncated Signed Distance Function,简称TSDF)是一种用于表示三维空间中物体表面的数据结构。它将空间划分为一个规则的体素网格,并为每个体素存储一个有符号距离值。这个距离值表示该体素中心到物体表面的距离。在物体表面内部的体素具有负值,而在物体表面外部的体素具有正值。为了减少存储和计算的开销,TSDF通常会对距离值进行截断,即只存储距离物体表面一定范围内的体素的距离值。
Actor-Critic(A2C)算法 原理讲解+pytorch程序实现 Actor-Critic(A2C)算法时强化学习中一种基于策略梯度(Policy Gradient)和价值函数(Value Function)的强化学习方法,通常被用于解决连续动作空间和高维状态空间下的强化学习问题。本文将详细推导Actor-Critic的实现过程并且附上基于pytorch实现的代码,最后给出算法优缺点分析和使用心得。
CV研究者自有出路 一文搞懂:Segment Anything 最近被一篇论文Segment Anything SAM刷屏了。借此也为各位小伙伴科普下Segment Anything到底做了什么。在本次讲解中,我将介绍论文实现的成果以及实现思路。最后对SAM的优缺点进行总结,并提出了关于图像分割领域值得探索的研究方向。
高阶数据增强:Cutmix 原理讲解&零基础程序实现 CutMix是一种数据增强技术,用于在训练图像分类模型时减轻过拟合问题,可以帮助提高模型的泛化性能和鲁棒性,是竞赛的一个重要涨分点。CutMix的核心思想是将两张图像的一部分混合在一起,生成一个新的训练样本。本篇博客详细讲解了CutMix的原理,并从零开始教大家实现将CutMix移植到自己的网络模型上。
用Python调用OpenAI API进行文本创作 本文将教大家用python调用OpenAI API进行文本创作。使用Python调用OpenAI API进行文本创作可以轻松地实现自然语言处理和文本生成,无需复杂的算法和底层编程;所生成文本的准确性也很高,具有一定的参考价值,是一些文字工作者的必备神器;
一文练就命令行高手: Linux命令大全 文章总结梳理了Linux中的20类的常用命令,几乎涵盖了系统的所有方面。励志:通过一篇博客为各位实现从Linux命令小白到命令行高手的蜕变。具体包括:cd命令、ls命令、mkdir命令、rm命令、cp命令、mv命令、find命令、chmod命令、cat命令、less命令、tail命令、grep命令、ip命令、ping命令、注销/关机/重启/清屏: logout/shutdown now/reboot/clear命令、ps命令、kill命令、vim文本编辑器、下载器wget、压缩包工具tar。
一文搞懂Linux rm命令 删除文件/文件夹 rm命令是Linux系统的一个命令。rm命令可以删除一个目录中的一个或多个文件或目录,也可以将某个目录及其下属的所有文件及其子目录均删除掉。对于链接文件,只是删除整个链接文件,而原有文件保持不变。使用rm命令要格外小心,一旦删除了一个文件,就无法再恢复它。
一只猫引出的数据增强[Data Augmentation] albumentations包是一个强大的数据增强包,本文以一张猫的图片为例,讲解深度学习中常用数据增强的实现方式及使用效果。包括:变换尺寸.Resize、中心裁剪.CenterCrop、随机裁剪.RandomSizedCrop、水平翻转.HorizontalFlip、垂直翻转.VerticalFlip、随机旋转.Rotate、随机亮度对比度.RandomBrightnessContrast、随机放射变换.ShiftScaleRotate、标准化.Normalize、转置.Transpose、网格畸变
vscode连接服务器后不显示Select Interpreter/不能切换虚拟环境的解决方法 vscode连接服务器并上传代码到服务器后,打开代码文件时会出现Select Interpreter消失的问题,即:不显示python解释器和运行按钮,导致不能切换到服务器中的指定python环境。这种问题有以下三种表现:1、页面没有python运行按钮。在编辑.py文件界面上,原来的python运行按钮不显示。
OriginPro,如何把软件Origin切换变成中文显示 Origin其实自带中文界面,很多朋友反馈不知道如何设置,软件里面也没看到有改变语言的选项。今天教大家如何将origin的语言改为中文。以2019版为例,(其他版本方法相同,注册表文件夹名字略有区别)
使用FTP上传数据到云服务器 CuteFTP和LeapFTP软件使用教程 FTP数据传输方式是本地与服务器之间常用的数据传输方式,本文整理打包了目前常用的CuteFTP和LeapFTP两款FTP第三方服务器软件,教大家如何使用CuteFTP/LeapFTP将本地文件上传至服务器。