目录-基于MatLab2016b实现
演化博弈论是研究个体在特定环境中如何通过策略选择与其他个体进行互动的学科。这一理论在生物学、经济学和社会科学等多个领域都有广泛应用。本文将深入探讨双方演化博弈的原理及其过程,并解读一段 MATLAB 代码,展示如何模拟这一过程。
一、演化博弈的原理
1. 基本概念
在演化博弈中,参与者(个体)根据其策略与其他参与者进行互动。每种策略在特定环境下的收益决定了这种策略的成功与否。参与者的策略会随着环境的变化而演变,形成“适者生存”的动态过程。
2. 参与者的策略
在一场博弈中,参与者可以选择不同的策略,这些策略的选择影响其在博弈中的收益。例如,在两个玩家的博弈中,常见的策略包括合作与背叛。通过不断的互动与反馈,成功的策略会在种群中逐渐传播。
3.演化过程
演化过程通常可分为以下几个步骤:
初始化:设定参与者的初始状态(策略)。
动态演化:根据参与者策略的收益变化,更新策略选择。
模拟和可视化:使用数学模型和计算机程序模拟演化过程,并通过图形化方式展示结果。
二、MATLAB 代码解读(博弈参与主体(双方)策略选择的动态演化讨程)
以下是用于模拟双方演化博弈的 MATLAB 代码示例:
下面这样的图就是x,y分别为不同参与主体的博弈行为策略概率
下面为复制动态方程函数,需要改成自己的复制动态方程。
注意下面这个代码要单独为一个文件,然后文件的名字,必须和函数的名字一样,比如下面的函数叫dxdt,那么文件名也必须要这个名字
x(1)表示主体1的概率,x(2)表示为主体2的概率,只能这样顺序的表示
所有的演化代码,都需要以这个文件为基础。
function dxdt = taihu(t, x, s, m, c1, c2, r)
dxdt = zeros(2, 1); % 初始化一个二元一次的输出
dxdt(1) = x(1) * (1 - x(1)) * (r - m - r * x(2)); % x(1) 的变化率
dxdt(2) = x(2) * (1 - x(2)) * (s - c1 + c2 - c2 * x(1)); % x(2) 的变化率
end
在设置出来动态方程文件后,再创建一个演化文件,为main文件,这个文件命名没有要求
但是[t, x] = ode45(@(t, x) taihu(t, x, s, m, c1, c2, r), [0, 10], [0.2, 0.8]);中taihu表示的是之前设置的复制动态方程的文件,需要和文件名称一致。
clc; clear;
s = 10; m = 5; c1 = 20; c2 = 5; r = 10; % 根据实际情况赋值
figure(1) % 创建图形窗口
% 不同初始条件的演化
[t, x] = ode45(@(t, x) taihu(t, x, s, m, c1, c2, r), [0, 10], [0.2, 0.8]);
plot(x(:, 1), x(:, 2), 'rh-'); % 绘制初始值[0.2, 0.8]的演化路径
hold on
[t, x] = ode45(@(t, x) taihu(t, x, s, m, c1, c2, r), [0, 10], [0.4, 0.6]);
plot(x(:, 1), x(:, 2), 'mx-'); % 绘制初始值[0.4, 0.6]的演化路径
hold on
[t, x] = ode45(@