四元数学习笔记(二):对偶四元数 在学习了前向文章初识四元数后,我们不难发现四元数只能用于表示旋转变换,而在实际应用中,我们不仅需要表示旋转,还需要表示位移。因此,本文将介绍何为对偶数,什么又是对偶四元数,以及对偶四元数的基本运算与相关性质。
四元数学习笔记(一):初识四元数 关于四元数,你想知道的一切都在这!本文将从四元数的定义与重要性入手,介绍四元数的相关运算规则(基础运算与高阶运算),四元数的应用(四元数表示旋转,四元数与其他旋转表示的相互转换),以及四元数的特殊性质(旋转复合与双倍覆盖)。
遗传算法(二)-- 编写遗传算法 下面会介绍编写遗传算法的整体流程(附代码与代码解读),同时会提出一些小问题,对于这些问题我自己给出的解答会在文章最后,也只是自己的一点思考。欢迎大家一起讨论( •̀ ω •́ )✧
遗传算法(一)-- 什么是遗传算法 遗传算法(Genetic Algorithm,GA)起源于对生物系统所进行的计算机模拟研究。它是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,借鉴了达尔文的进化论和孟德尔的遗传学说。本质上是一种高效、并行、全局搜索的方法,能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地搜索过程以求得最佳解。
3D仿真学习笔记(七)-- 五轴精密数控机床坐标系设定 上图为一五轴精密数控机床结构示意图。轴、轴相互连接固定在Y轴拖板上,、轴拖板相互垂直,工件安装在 轴上,传感器安装在主轴上。下图为精密数控机床拓扑结构。1 五轴精密数控机床坐标系设定建立机床坐标系,基于多体理论推导机床误差综合数学模型,为计算传感器和工件之间的误差和为精密数控机床建模方便,所有机床坐标系都采用右手笛卡尔坐标系。五轴精密数控机床分为两条运动链: 工件链:在床身上建立参考坐标系 0;在轴拖板上建立坐标系 1 为低序体 ...
3D仿真学习笔记(六)-- 机床误差综合建模的步骤与意义 1 建模步骤依据齐次坐标变换、多体系统理论构建机床误差综合模型主要包括以下几个步骤。1)首先要明确机床的自身特征和研究重点内容,将数控机床整体抽象成一个多体系统。2)其次,明确拓扑关系并且借助低序体阵列对机床进行多体系统的描述与研究。从运动学角度可以视误差为运动,对各种误差元及其关系进行系统分析与研究,并建立其特征矩阵。3)最后明确理想运动状态、实际运动状态下相邻典型体之间矩阵关系,确立坐标系并进行误差综合模型的构建与分析。...
3D仿真学习笔记(五)-- 机床误差建模方法 假定系统空间中存在某一点,其在广义坐标系 中用 来表示,其在惯性坐标系 中的位置则可以用下面的方式来表达:上式中表示的是典型体和参考体系的相对阶数,表示的在实际运动中相邻典型体的位置齐次变换矩阵,可以从表达式 1.22 中获得,表示的是低序体算子。 假定在系统空间中存在某一矢量,其在中用来表示,则对应的齐次坐标可以用以下的形式来反映: 式中表示在对应的轴、轴和轴上的投影,而在...
3D仿真学习笔记(四)-- 相邻典型体间实际运动的运动学描述 运动过程中的最终姿态可由依据上图表示的运动过程获得,过程如下所示: 1)典型体 相对于低序体 安装时的实际初始位姿估算:第一步通过矢量给一个初始理想固定位姿,第二步再给融入得到相对的实际初始位姿; 2)典型体在低序体上的相对运动:第一步在的实际初始位姿上设置,最终明确误差运动,最后得到的最终位姿。 相邻典型体之间实际运动齐次变换矩阵可以由以下表达式来表示: ...
3D仿真学习笔记(三)-- 相邻典型体间的误差齐次变换矩阵 当 沿其低序体的方向平移后,的方向上会产生 6 项误差:定位误差,直线度误差,滚转角误差,俯仰角误差,偏转角误差。将以上的 6 项误差带入相邻典型体位置变换矩阵,可得沿着的轴方向平动时的位置误差变换矩阵: 通常,因角误差 数值较小,则满足和的基本条件,同时将高阶无穷小忽略,可以获得以下表达式: 分别在 1.17 表达式中将滚转角误差、俯仰角误差和偏摆角误差代入,经过表达式的简化之后可以获得...
3D仿真学习笔记(二)-- 相邻典型体间的运动学误差分析 本文中用符号 表示移动误差(定位误差、直线度误差),误差方向用下标字母 表示,运动方向用下标字母 表示,误差种类用字母 ( 表示几何误差, 表示热误差, 表示力变形误差)等表示。同理用符号 表示转角误差。(1)移动副误差运动学分析 如下图所示,实际情况下,当典型体沿着其低序体(如拖板在某一导轨上运动)的方向平移一定距离时,会在典型体对应的方向上出现定位偏差,而在方向上则会出现水平直线度偏差,在方向上出现竖直直线度误差,滚转角误差,偏摆角误差...
3D仿真学习笔记(一)-- 多体系统数理基础 1 低序体阵列描述法多体系统中典型体 的 阶低序体的序号定义为:低序体算子用 表示,满足条件:补充以下定义: 特别的,当体和体为两相邻低序体时,有: 任一多体系统拓扑图如下图所示,字母表示惯性参考系并设为体,选的靠近体为,然后沿到的方向按自然增长数列为各体从一个分支到另一个分支进行编号。下图所示的多体系统的低序体阵列通过式 (1.1) ~ (1.5) 就可以...
标定学习笔记(十)-- 一种使用校正模板的非线性相机标定方法 通过使用图像特征,如直线等几何不变性,并基于场景中的直线经过透视投影变换后所成的图像仍是直线的事实实现畸变校正;与通过不同视角拍摄的多幅图像之间的点的对应关系来求取镜头畸变参数。由于非可量测标定或自标定方法从本质上来讲都是基于绝对二次曲线或绝对二次曲面的方法,其最大的不足是其鲁棒性差,一般都要通过求解复杂的非线性方程来计算摄像机的内参数,从而导致运算速度和结果的精度都不理想。 可量测的非线性摄像机镜头畸变校正方法(下简称为RMC方法),可以被看成是分为两个过程:畸变模板校正...
标定学习笔记(九)-- 利用空间正交约束的相机自标定和三维重建 文章提出了一种用 2 幅存在正交约束的场景图像进行三维重建的方法,该方法不需要事先标定相机的参数,就可以实现从 2 幅手持数码相机拍摄的人造规则景物图像中恢复三维结构。1 空间正交约束的消失成像 同一平面中相互平行和垂直的直线构成了线状纹理表面,当相机在不同角度拍摄时,纹理梯度方向将发生变换,但可以根据其消失点位置信息来恢复纹理表面朝向。图 1 所示的平面纹理和立体结构经透视成像后分别在图像上得到 2 个和 3 个消失点。1.1 相机空间映射变换 ...
标定学习笔记(八)-- 基于单幅图像的完全标定 其中,表示一个 3X4 的投影矩阵;是相机的外参旋转矩阵,是相机的外参位移矩阵;表示相机的内参矩阵,由相机本身的属性确定;为非零尺度因子。 一般相机的内参矩阵可以表示为如下一个 3X3 矩阵: 其中,和为相机在和方向上的焦距;和是光心的坐标,需要标定的内参矩阵拥有 4 个自由度。在某...
标定学习笔记(七)-- 手眼标定转换关系再梳理 1 手眼标定的目的 简单来说,手眼标定的目的就是让机械手能精准定位到图像上的点。所需要建立的关系其实就是从机械手坐标系到像素坐标系的转换关系,可以记为: 我们知道,机械手可以被视为两部分:机械手基座(base)与机械手末端夹具(tool)(在这里我们不去考虑其中各个关节各自所带来的影响)。而像素坐标系又可以通过张正友标定法将其与相机坐标系(cam)相关联。至此,我们可以将上面看似抽象的问题进一步细化为:解决机械手基座坐标系到相机坐标系的转换关系,即: ...
标定学习笔记(六)-- Halcon手眼标定例程:Hand-eye-Calibration with a stationary cam 1 问题概述 本例程演示了如何对一个 Eye-to-Hand 问题进行手眼标定,即相机与机器人基座是固定不动的,用于进行标定的标定板则固定于机械手末端的夹具上。 在本例程中,手眼标定的目的是为了解出两个未知量: 1)机器人基座在相机坐标系下的位姿:BaseInCamPose。 2)标定物在夹具坐标系下的位姿:ToolInBasePose。 理论上,需要至少三个机器人基座在相机坐标系下的位姿以及至少三个标定物在夹具坐标...