OpenCV for Python 学习第二天 :图片展示方法介绍以及像素的修改

上一篇博客我们简单了解了一下如何打开图片、保存图片、创建窗口等等。那么今天我们就来尝试一下完成OpenCV基础操作——图像的处理

什么是图像处理

图像处理是指对数字图像进行操作和改变其外观、属性或质量的技术和方法。它涉及到数字图像的获取、存储、传输和处理等各个方面。图像处理可以用于各种应用,例如医学图像、视觉检测、计算机视觉、图像识别、数字图像增强、图像复原等领域。它是数字信号处理和计算机视觉等领域的基础。

图像的展示方法

我们都知道,相机可以拍出彩色和黑白的相片。这转换成计算机中的程序用于就是图像的表示方法。我们在这里简单介绍几种图像的表示方法,有以下几种:

  1. 二进制位图(Bitmap):使用像素点的二进制值表示图像。

  2. 矢量图(Vector):使用数学公式记录图像中的线条、曲线等形状信息。

  3. 灰度图像(Grayscale):使用像素点的灰度值表示图像,灰度值越大,像素越黑,反之越白。

  4. 压缩图像(Compressed):使用一种压缩算法使图像文件大小大幅减小,例如JPEG、PNG等格式。

  5. 颜色索引图像(Indexed Color):将颜色值存储在一个颜色索引表中,然后将每个像素的颜色值与颜色索引表中的颜色值进行匹配。

  6. 透明图像(Transparent):除了能显示出图像边缘和内容的像素以外,还包括能够使图像透明的像素。

  7. 三维图像(3D):使用三维坐标系表示的图像,可以与虚拟现实、计算机游戏等领域结合使用。

上面都是图像的不同表现形式,我们可以将上面的多种图像形式整合成下面两个大类。即灰度图像彩色图像

灰度图像介绍

灰度图像表现的是一种由白色到黑色区间来取色的图像。图像采用了更多的数值来展现不一样的效果。一般来说,有256个灰度级,我们会使用[0,255]的灰度区间来表示。其中255表示的是纯白色,0表示的是纯黑色。

首席二进制的朋友们都知道28的值正好是256,也就是说,这个数值刚好可以用一个字节来表示一个数值(由于一个字节等于8个BIT&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

地摊主老袁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值