【leetcode17-----子数组最大平均数】

1.题目描述

给你一个由 n 个元素组成的整数数组 nums 和一个整数 k 。

请你找出平均数最大且 长度为 k 的连续子数组,并输出该最大平均数。

任何误差小于 10-5 的答案都将被视为正确答案。

示例 1:

输入:nums = [1,12,-5,-6,50,3], k = 4
输出:12.75
解释:最大平均数 (12-5-6+50)/4 = 51/4 = 12.75
示例 2:

输入:nums = [5], k = 1
输出:5.00000

2.题目链接

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/maximum-average-subarray-i

3.思路讲解

笔者最开始解这道题的时候使用的是暴力解法,结果最后超过了时间限度,然后又对算法进行了优化,要找出平均数最大的长度为 k 的连续子数组,那么只需找出总和最大的长度为 k 的连续子数组,首先计算前k个数的和作为初始值,也作为最大值,然后从第k个数开始向后移动,每次移动子数组和的变化是加上当前元素的值,减去当前元素的k个元素之前的值,每次移动子数组就是进去一个数出去一个数。每次移动都比较一下当前总和与最大值的大小,若大于最大值,则最大值就等于当前总和,最后即可找出具有最大总和的长度为 k 的连续子数组,然后除以k,就得到平均数。

4.模板代码

class Solution {
    public double findMaxAverage(int[] nums, int k) {
        double ave;
        
        int sum=0;
        //首先计算前k个数的总和作为初始值
        for(int i=0;i<k;i++){
            sum+=nums[i];
        }
        int max=sum;//也作为最大值
        for(int i=k;i<nums.length;i++){
            sum=sum+nums[i]-nums[i-k];//每次移动总和就等于加上当前元素,减去当前元素的k个数之前的元素
            if(sum>max){//与最大值比较,若比最大值大,则最大值等于sum
                max=sum;
            }
        }
        
        ave=1.0*max/k;
        return ave;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值