目录
一般情况下,参数检验方法假设统计总体的具体分布为已知,但是我们往往会遇到一些总体分布不能用有限个实参数来描述或者不考虑被研究的对象为何种分布,以及无法合理假设总体分布形式的情形,这时我们就需要放弃对总体分布参数的依赖,从而去寻求更多来自样本的信息,基于这种思路的统计检验方法被成为非参数检验。常用的非参数检验包括单样本正态分布检验,两独立样本检验,多独立样本检验,游程检验等。
5.1单样本正态分布检验
单样本正态分布检验本质上属于一种拟合优度检验,基本功能是通过检验样本特征来探索总体是否服从正态分布。Stata的单样本正态分布检验有很多种,常用的包括偏度-峰度检验、Wilks Shapiro两种。
数据(案例5.1)是山东财经大学某专业60名男生的百米速度。试用单样本正态分布检验方法研究其是否服从正态分布。

sktest speed #本命令的模式是对speed变量使用偏度-峰度检验方式进行单样本正态分布检验

本文介绍了Stata中的非参数检验,包括单样本正态分布检验、两独立样本检验、两相关样本检验、多独立样本检验和游程检验。通过案例分析,展示了如何使用Stata进行这些检验,并解释了检验结果的含义,帮助理解总体分布和样本间的差异。
最低0.47元/天 解锁文章
2257

被折叠的 条评论
为什么被折叠?



