进程池提升效率

本文探讨了如何通过Python的ThreadPool线程池实现计算逻辑的同步执行,尤其是在处理大量任务时遇到的性能瓶颈。通过对比同步和异步方式,以及利用多进程池的并发优势,优化了计算速度,特别是在服务器资源充足的环境下。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python ThreadPool线程池的运用

执行以下计算逻辑,阻塞,同步执行,发现特别慢,进行优化一下

qs = [i for i in range(200)]

def calculate_num(item):
    """费时操作(eg: 查询并计算)"""
    print(item)


for item in qs:
    calculate_num(item)

使用进程池,并发执行任务,速度直接提升2倍不止(服务器配置越高,处理速度越快)

from multiprocessing.pool import ThreadPool

qs = [i for i in range(200)]
pool = ThreadPool()  # 创建一个线程池, processes=None时,返回 os.cpu_count() or 1
# pool.map(self.calculate_num, qs)  # 往线程池中填线程
pool.map_async(calculate_num, qs)  # 往线程池中异步填线程
pool.close()  # 关闭线程池,不再接受线程
pool.join()  # 等待线程池中线程全部执行完

查看当前机器的cpu核数

import os
c = os.cpu_count()
print(c)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值