01背包问题

一共有N件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?

# 假定重量和价值为以下两个列表(w,v只可进行w[i], v[i]操作)
w = [0, 8, 23, 50, 20, 30]
v = [0, 16, 46, 100, 20, 30]

def max_value(N, W):
    """
    让列表中的每一个元素都与其他元素相加,根据总重量≤W的几种组合,求出其中价值最大的一种组合
    :param N: 物品数量
    :param W: 背包重量承载上限
    :return:
    """
    f = [[0 for i in range(W+1)] for j in range(N+1)]

    for i in range(1, N+1):
        for j in range(W+1):
            f[i][j] = f[i-1][j]
            if j >= w[i]:
                f[i][j] = max(f[i][j], f[i - 1][j - w[i]] + v[i])
    return f[N][W]


if __name__ == '__main__':
    N = 5
    W = 50

    print(max_value(N, W))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值