
图像处理
文章平均质量分 80
图像处理
Lunar*
这个作者很懒,什么都没留下…
展开
-
神经风格迁移技术详解及代码实现
利用卷积神经网络(CNN)提取图像的内容特征和风格特征。定义两种损失函数:内容损失:保持图像的高层语义信息,使生成图像与内容图像在特定层次上接近。风格损失:通过计算不同层特征的 Gram 矩阵,捕捉图像的纹理、颜色等风格信息,使生成图像在风格上贴近风格图像。结合总变差(Total Variation, TV)损失平滑生成图像,防止噪音和细节过分混乱。通过梯度下降法不断优化生成图像,直到生成图像在内容和风格上达到较高一致性。原创 2025-03-12 10:06:15 · 1087 阅读 · 0 评论 -
使用 pytesseract 进行 OCR 识别:以固定区域经纬度提取为例
OCR(Optical Character Recognition,光学字符识别)技术能够将图片中的文字信息转换成可编辑的文本。Tesseract 是一款开源的 OCR 引擎,功能强大且准确率较高;而则是其 Python 封装,可以方便地在 Python 项目中调用 Tesseract 进行识别。在我们的示例中,我们主要针对图像上固定位置的经纬度区域进行处理与识别。由于经纬度中只包含数字、小数点、°、N、S、E、W 等字符,我们可以通过设置白名单限制识别字符,从而提高识别准确率。原创 2025-03-12 09:14:22 · 656 阅读 · 0 评论 -
基于骨架提取与傅里叶描述符的曲线相似度计算
本文介绍通过骨架提取结合傅里叶描述符的方法,实现两条曲线的形状相似度量化。原创 2025-01-30 08:00:00 · 358 阅读 · 0 评论 -
使用暗通道先验过滤雾天图像
雾天图像由于能见度降低,往往会导致图像对比度较低,影响后续计算机视觉任务的效果。本文介绍一种基于的方法,通过计算图像的暗通道均值,快速判断图像是否为雾天。原创 2024-12-16 17:00:08 · 721 阅读 · 0 评论 -
基于日出日落时间过滤夜间图像
在图像处理任务中,夜间图像可能由于光线不足而成为噪声数据。如何有效地过滤夜间图像成为一个重要问题。原创 2024-12-16 17:15:10 · 356 阅读 · 0 评论 -
计算条形 Mask 的倾斜角度:基于最小二乘法与主成分分析法
本文介绍了两种计算条形 Mask 倾斜角度的方法,并结合骨架提取提高了计算效率。最小二乘法简单高效,适合规则形状的目标;而PCA稳定性更高,适合复杂或带噪声的目标。你可以根据具体的应用场景选择合适的方法!原创 2024-12-31 10:44:46 · 313 阅读 · 0 评论 -
深入理解 OpenCV 的距离变换(cv2.distanceTransform)及其应用
距离变换是针对二值图像的一种操作,其结果是一个灰度图像,图像中每个像素的灰度值表示它到最近的前景像素(通常是白色区域)的距离。简单来说,它可以帮助我们量化背景区域到前景区域的空间分布。OpenCV 的 cv2.distanceTransform 是一个功能强大且易于使用的工具。通过距离变换,我们可以在图像处理任务中挖掘更多的空间信息,提升算法的精度和鲁棒性。无论是图像分割、目标检测还是工业和医学应用,距离变换都能为我们提供强大的数据支持。原创 2024-12-23 18:00:00 · 980 阅读 · 0 评论 -
使用 NVIDIA DALI 计算视频的光流
本文介绍了如何使用 NVIDIA DALI 库计算视频的光流,代码实现了一个功能完整的光流计算类,并展示了其基本用法。通过 DALI,我们可以在 GPU 上高效地处理光流计算任务,为视频分析任务提供强大的支持。光流是视频分析领域的基础工具之一,结合 NVIDIA DALI 的硬件加速能力,可以大幅提升光流计算的效率。如果你需要处理大规模视频数据或进行实时分析,DALI 是一个值得尝试的解决方案。原创 2024-12-18 09:11:56 · 873 阅读 · 0 评论 -
使用分割 Mask 和 K-means 聚类获取天空的颜色
本篇博客介绍如何通过已知的天空区域 Mask 提取天空像素,并使用 K-means 聚类分析天空颜色,最终根据颜色占比查表得到主导颜色。原创 2025-01-15 08:43:42 · 623 阅读 · 0 评论 -
计算无人机俯拍图像的地面采样距离(GSD)矩阵
GSD是衡量图像空间分辨率的核心指标。图像传感器大小:传感器越大,单个像素接收到的地面信息越多。飞行高度:飞行高度越高,每个像素对应的地面范围越大,但空间分辨率相对降低。相机焦距:焦距越长,地面范围缩小,从而提高分辨率。图像尺寸:图像的分辨率(像素宽度与高度)也会影响每个像素所覆盖的地面范围。本文介绍了如何计算无人机俯拍图像的GSD矩阵,并展示了其在面积测量等实际应用中的价值。掌握GSD的计算与应用方法,可以帮助我们更好地处理无人机影像数据,提升分析结果的精度与可信度。原创 2024-12-17 17:26:46 · 1502 阅读 · 0 评论 -
基于特征进行大规模图像去重
本文介绍了一种基于深度学习的图像去重方法,通过预训练模型(如 ResNet50)提取图像特征向量,并利用余弦相似度判断图像是否重复。核心方法 deduplicate_by_similarity 使用高效的批量计算,保留唯一图像,同时避免内存占用过高。该方法适合大规模图像数据处理,提供了完整代码和使用示例,便于快速应用到实际项目中。原创 2025-01-16 08:58:31 · 978 阅读 · 0 评论