
算法与优化
文章平均质量分 80
算法与优化
Lunar*
这个作者很懒,什么都没留下…
展开
-
利用 C++ 与 pybind11 提升 Python 核心代码性能与保密性
通过上述方案,我们既保留了纯 Python 的实现,也实现了利用 C++ 与 pybind11 封装的高性能模块,并且对比测试了两者的执行速度。性能提升:核心算法经 C++ 编译优化后,运行速度显著加快。保密增强:关键算法封装在编译后的共享库中,不易直接还原源码。无缝集成:通过 pybind11 将 C++ 功能导出为 Python 模块,现有 Python 项目几乎无需做改动。这种采用 C++ 与 pybind11 混合开发的方案,特别适用于那些既有高性能需求又有核心逻辑保密需求的项目。原创 2025-03-18 09:47:14 · 579 阅读 · 0 评论 -
基于骨架提取与傅里叶描述符的曲线相似度计算
本文介绍通过骨架提取结合傅里叶描述符的方法,实现两条曲线的形状相似度量化。原创 2025-01-30 08:00:00 · 337 阅读 · 0 评论 -
Python高效绘制中文文本到视频流帧的优化方法
通过将中文标签预渲染为纹理并缓存起来,我们成功实现了一种高效的中文绘制方法,特别适合实时视频流分析场景。这种方法不仅提升了性能,还简化了代码逻辑,非常值得在实际项目中推广使用。原创 2025-01-20 08:42:35 · 822 阅读 · 0 评论 -
深入理解信息检索之BM25算法
BM25作为经典的文本相关性评分算法,凭借其简单、高效和鲁棒性,在信息检索领域占据了重要地位。尽管存在一定的局限性,但通过改进和扩展,BM25能够适应更多复杂的场景需求。在现代搜索系统中,BM25依然是不可或缺的基础工具,同时与深度学习模型的结合也为未来的信息检索技术提供了更多可能性。原创 2024-12-18 09:26:46 · 1366 阅读 · 0 评论 -
深入理解 OpenCV 的距离变换(cv2.distanceTransform)及其应用
距离变换是针对二值图像的一种操作,其结果是一个灰度图像,图像中每个像素的灰度值表示它到最近的前景像素(通常是白色区域)的距离。简单来说,它可以帮助我们量化背景区域到前景区域的空间分布。OpenCV 的 cv2.distanceTransform 是一个功能强大且易于使用的工具。通过距离变换,我们可以在图像处理任务中挖掘更多的空间信息,提升算法的精度和鲁棒性。无论是图像分割、目标检测还是工业和医学应用,距离变换都能为我们提供强大的数据支持。原创 2024-12-23 18:00:00 · 688 阅读 · 0 评论 -
使用 NVIDIA DALI 计算视频的光流
本文介绍了如何使用 NVIDIA DALI 库计算视频的光流,代码实现了一个功能完整的光流计算类,并展示了其基本用法。通过 DALI,我们可以在 GPU 上高效地处理光流计算任务,为视频分析任务提供强大的支持。光流是视频分析领域的基础工具之一,结合 NVIDIA DALI 的硬件加速能力,可以大幅提升光流计算的效率。如果你需要处理大规模视频数据或进行实时分析,DALI 是一个值得尝试的解决方案。原创 2024-12-18 09:11:56 · 793 阅读 · 0 评论 -
使用分割 Mask 和 K-means 聚类获取天空的颜色
本篇博客介绍如何通过已知的天空区域 Mask 提取天空像素,并使用 K-means 聚类分析天空颜色,最终根据颜色占比查表得到主导颜色。原创 2025-01-15 08:43:42 · 585 阅读 · 0 评论 -
计算条形 Mask 的倾斜角度:基于最小二乘法与主成分分析法
本文介绍了两种计算条形 Mask 倾斜角度的方法,并结合骨架提取提高了计算效率。最小二乘法简单高效,适合规则形状的目标;而PCA稳定性更高,适合复杂或带噪声的目标。你可以根据具体的应用场景选择合适的方法!原创 2024-12-31 10:44:46 · 285 阅读 · 0 评论 -
计算无人机俯拍图像的地面采样距离(GSD)矩阵
GSD是衡量图像空间分辨率的核心指标。图像传感器大小:传感器越大,单个像素接收到的地面信息越多。飞行高度:飞行高度越高,每个像素对应的地面范围越大,但空间分辨率相对降低。相机焦距:焦距越长,地面范围缩小,从而提高分辨率。图像尺寸:图像的分辨率(像素宽度与高度)也会影响每个像素所覆盖的地面范围。本文介绍了如何计算无人机俯拍图像的GSD矩阵,并展示了其在面积测量等实际应用中的价值。掌握GSD的计算与应用方法,可以帮助我们更好地处理无人机影像数据,提升分析结果的精度与可信度。原创 2024-12-17 17:26:46 · 1208 阅读 · 0 评论 -
深入理解非极大值抑制(NMS)算法
非极大值抑制是提高目标检测性能的重要步骤。通过本文的介绍和代码示例,希望读者能够更好地理解NMS算法的工作原理及其在实际应用中的重要性。原创 2024-06-19 17:11:12 · 532 阅读 · 0 评论 -
使用暗通道先验过滤雾天图像
雾天图像由于能见度降低,往往会导致图像对比度较低,影响后续计算机视觉任务的效果。本文介绍一种基于的方法,通过计算图像的暗通道均值,快速判断图像是否为雾天。原创 2024-12-16 17:00:08 · 702 阅读 · 0 评论 -
基于分组 NMS 的检测模型后处理改进
通过引入分组NMS,我们解决了传统NMS在处理相近类别目标时的不足,尤其是在类别混淆较高的场景中(如“自行车”和“电动车”)。该方法在保持代码高效性的同时,显著提升了检测质量,适用于多种目标检测任务。原创 2024-12-17 09:23:36 · 1269 阅读 · 0 评论 -
基于日出日落时间过滤夜间图像
在图像处理任务中,夜间图像可能由于光线不足而成为噪声数据。如何有效地过滤夜间图像成为一个重要问题。原创 2024-12-16 17:15:10 · 340 阅读 · 0 评论