Python对冰冰的第一条vlog并进行数据分析

Python对冰冰的第一条vlog并进行数据分析

Python对冰冰的第一条vlog千条评论并进行数据分析,绘制词云图,看看大家说了什么吧。

酱酱酱,那就开始吧

版权声明:本文为博主原创文章,创作不易
本文链接:https://beishan.blog.csdn.net/article/details/112100932


【冰冰vlog.001】带大家看看每个冬天我必去的地方

1. 数据收集

1.1 获取接口

哔哩哔哩其实留了很多接口,可以供我们来获取数据。 首先打开目标网站,并查看网页源码,发现评论内容不在源码中,可以确认评论是动态生成的。于是进入开发者模式,查找返回的内容。

1.2 查看数据

点击preview即可发现评论数据在这里
在这里插入图片描述

1.3 解析URL

去掉第一个和最后一个参数可得评论URL,https://api.bilibili.com/x/v2/replyjsonp&type=1&oid=800760067&sort=2&pn=.

在这里插入图片描述


1.4 解析数据

大家可以将获取的json
接下来就是正式的爬取工作了,和爬取百度图片原理一样,自己试试吧。
为了方便查看json数据,可以将html中的json复制到json在线解析中查看
在这里插入图片描述

2. 数据分析

数据获取后,就可以开始初步的数据分析了

import pandas as pd

data = pd.read_excel(r"bingbing.xlsx")
data.head()
用户性别等级评论点赞
0食贫道6[呆][呆][呆]你来了嘿!158457
1毕导THU6我是冰冰仅有的3个关注之一[tv_doge]我和冰冰贴贴148439
2老师好我叫何同学6[热词系列_知识增加]89634
3央视网快看保密6冰冰来了!我们要失业了吗[doge][doge]118370
4厦门大学保密5哇欢迎冰冰!!!66196

原文链接

2.1 数据描述

data.describe()
等级点赞
count1180.0000001180.000000
mean4.4813562200.617797
std1.04137910872.524850
min2.0000001.000000
25%4.0000004.000000
50%5.0000009.000000
75%5.000000203.750000
max6.000000158457.000000

2. 2 删除空值

data.dropna()
用户性别等级评论点赞
0食贫道6[呆][呆][呆]你来了嘿!158457
1毕导THU6我是冰冰仅有的3个关注之一[tv_doge]我和冰冰贴贴148439
2老师好我叫何同学6[热词系列_知识增加]89634
3央视网快看保密6冰冰来了!我们要失业了吗[doge][doge]118370
4厦门大学保密5哇欢迎冰冰!!!66196
..................
1175黑旗鱼保密511小时一百万,好快[惊讶]5
1176是你的益达哦6冰冰粉丝上涨速度:11小时107.3万,平均每小时上涨9.75万,每分钟上涨1625,每秒钟...5
1177快乐风男崔斯特4军训的时候去了趟厕所,出来忘记是哪个队伍了。看了up的视频才想起来,是三连[doge][滑稽]5
1178很认真的大熊5我觉得冰冰主持春晚应该问题不大吧。[OK]5
1179飞拖鞋呀吼保密5《论一个2级号如何在2020年最后一天成为百大up主》5

1180 rows × 5 columns

2.3 删除重复值

data.drop_duplicates()
用户性别等级评论点赞
0食贫道6[呆][呆][呆]你来了嘿!158457
1毕导THU6我是冰冰仅有的3个关注之一[tv_doge]我和冰冰贴贴148439
2老师好我叫何同学6[热词系列_知识增加]89634
3央视网快看保密6冰冰来了!我们要失业了吗[doge][doge]118370
4厦门大学保密5哇欢迎冰冰!!!66196
..................
1175黑旗鱼保密511小时一百万,好快[惊讶]5
1176是你的益达哦6冰冰粉丝上涨速度:11小时107.3万,平均每小时上涨9.75万,每分钟上涨1625,每秒钟...5
1177快乐风男崔斯特4军训的时候去了趟厕所,出来忘记是哪个队伍了。看了up的视频才想起来,是三连[doge][滑稽]5
1178很认真的大熊5我觉得冰冰主持春晚应该问题不大吧。[OK]5
1179飞拖鞋呀吼保密5《论一个2级号如何在2020年最后一天成为百大up主》5

1179 rows × 5 columns

3. 可视化展示

用的的工具是pyecharts,可以参考快速掌握数据可视化工具pyecharts

3.1 点赞TOP20

df1 = data.sort_values(by="点赞",ascending=False).head(20)
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c1 = (
    Bar()
    .add_xaxis(df1["评论"].to_list())
    .add_yaxis("点赞数", df1["点赞"].to_list(), color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="评论热度Top20"),
        datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],
    )
    .render_notebook()
)
c1

在这里插入图片描述

3.2 等级分布

data.等级.value_counts().sort_index(ascending=False)
6    165
5    502
4    312
3    138
2     63
Name: 等级, dtype: int64
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c2 = (
    Pie()
    .add(
        "",
        [list(z) for z in zip([str(i) for i in range(2,7)], [63,138,312,502,165])],
        radius=["40%", "75%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="等级分布"),
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render_notebook()
)
c2

在这里插入图片描述

3.3 性别分布

data.性别.value_counts().sort_index(ascending=False)
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c4 = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(["男","女","保密"], ["404",'103','673'])],
        radius=["40%", "75%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="性别分布"),
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render_notebook()
    
)
c4

在这里插入图片描述

3.4 绘制词云图

from wordcloud import WordCloud
import jieba
from tkinter import _flatten
from matplotlib.pyplot import imread
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
with open('stoplist.txt', 'r', encoding='utf-8') as f:
    stopWords = f.read()
with open('停用词.txt','r',encoding='utf-8') as t:
    stopWord = t.read()
total = stopWord.split() + stopWords.split()
def my_word_cloud(data=None, stopWords=None, img=None):
    dataCut = data.apply(jieba.lcut)  # 分词
    dataAfter = dataCut.apply(lambda x: [i for i in x if i not in stopWords])  # 去除停用词
    wordFre = pd.Series(_flatten(list(dataAfter))).value_counts()  # 统计词频
    mask = plt.imread(img)
    plt.figure(figsize=(20,20))
    wc  = WordCloud(scale=10,font_path='C:/Windows/Fonts/STXINGKA.TTF',mask=mask,background_color="white",)
    wc.fit_words(wordFre)
    plt.imshow(wc)
    plt.axis('off')
my_word_cloud(data=data["评论"],stopWords=stopWords,img="1.jpeg")

3.5 Summary

在这里插入图片描述

4. 后记

根据弹幕获取的词云图,可以参考
冰冰B站视频弹幕爬取原理解析

通过之前博客的学习,想必大家已经对Python网络爬虫有了了解,希望大家动手实践。笔者能力有限,有更多有趣的发现,欢迎私信或留言


到这里就结束了,如果对你有帮助,欢迎点赞关注,你的点赞对我很重要

在这里插入图片描述

在这里插入图片描述

  • 457
    点赞
  • 1419
    收藏
  • 打赏
    打赏
  • 76
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:博客之星2021 设计师:Hiro_C 返回首页
评论 76

打赏作者

北山啦

哎呀妈,这个功能还没人试过呢

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值