jqdata 期货分钟数据下载指南 -- windows下 python3.6

1.在python等环境安装好的情况下,下载安装jqdatasdk,提供下载到本地安装方式:

到https://github.com/JoinQuant/jqdatasdk
下载文件到本地在这里插入图片描述
2.cmd到解压文件夹下运行 python setup.py install
在这里插入图片描述
3.到python环境中写代码(本人使用pycharn python IDE)
代码参考如下:

  import jqdatasdk
    import os
    import pandas as pd
    jqdatasdk.auth("user","password)
    



#起始时间设置
date_start = []
date_end = []
for date_str in range(2016,2020):
    date_start.append(str(date_str)+"-01-01")
    date_end.append(str(date_str)+"-12-31")

#获取文件夹下文件函数
def file_name(file_dir):
     L=[]
     for root, dirs, files in os.walk(file_dir):
         for file in files:
             if os.path.splitext(file)[1] == '.csv':
                 L.append(file.split(".")[0])
     return L


if __name__ == '__main__':
    # feature_index = jqdatasdk.get_all_securities(['futures']  # 获取所有期货标的
    # feature_index["index1"] = feature_index.index
    # feature_index.to_excel("所有期货合约.xlsx",index=False)#将标的保存至本地,根据标的起始日期 添加此标的需要下载的年份数据是否存在
    feature_index = pd.read_excel("所有期货合约.xlsx")
    index_1 = list(feature_index["index1"])
    name_1  = list(feature_index["name"])
    c_name = list(feature_index["display_name"])

    for d in range(len(date_start)-1):
        try:
            os.makedirs("期货1分钟数据/"+date_start[d].split("-")[0])
        except:
            pass
        new_index1 = feature_index[feature_index["is_"+date_start[d].split("-")[0]]==1]
        print(len(new_index1))
        already_index = file_name("期货1分钟数据/"+date_start[d].split("-")[0])
        new_index = list(set(list(new_index1["name"]))-set(already_index))
        print(len(new_index))
        for i in new_index:
            sub = feature_index[feature_index["name"]==i]
            df = jqdatasdk.get_price(security = list(sub["index1"])[0],  start_date=date_start[d],end_date=date_start[d+1], frequency='1m', fields=['open', 'close', 'high', 'low', 'volume', 'money'],skip_paused=True)
            if len(df)>0:
                df["name"] = list(sub["name"])[0]
                df["time"] = df.index
                df = df.loc[:,["name","time",'open', 'close', 'high', 'low', 'volume', 'money']]
                df.to_csv("期货1分钟数据/"+date_start[d].split("-")[0]+"/"+list(sub["name"])[0]+".csv",index=False

保存结果如下:在这里插入图片描述
期货标的文件如下:在这里插入图片描述
大家试着下载数据吧~~~~

  • 0
    点赞
  • 1
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
期货全品种行情下载工具和行情重播回测API 期货市场全品种行情tick数据收集工具3.1 支持盘中实时行情和历史行情连续回播,开盘时间申请到当前行情时间段也不会缺行情, 当数据服务器将文件历史行情回播完成后,开始接着播放实时行情,直到通过python api 调用方法,通知服务器停止回播实时行情。 目前不支持并发,对同一个品种多次调用回播api,会导致回播行情数据顺序错乱。 对不同品种多次调用回播api,可能因为cpu占用过大,会导致服务器UI没有响应。后面升级版本会 完整的并发解决方案。 期货市场全品种行情tick数据收集工具3.0 (1)TCP网络连接由同步模式改为异步模式,解决某些网络状况无法连接数据采集服务器的问题 未来升级版本将优化性能 期货市场全品种行情tick数据收集工具2.9b 清理了不需要的.lib,不会再提示缺少ctp的dll文件,删除了不需要的方法 支持任意IP地址的连接,可以实现连接云主机运行的行情收集服务器,或局域网里的行情收集服务器。 期货市场全品种行情tick数据收集工具2.9 修复了多个API进程之间回调数据时互相影响 当前合约数约323个合约,最大范围1200个合约,视合约产品而定。 本例正式发布版本2.7 可以自由设置行情服务器 模拟simnow24小时行情服务器在交易日上午没有数据,要在下午4点之后才有数据。 模拟simnow实盘同步时间服务器,和实盘同步。 可改为期货公司的服务器IP,见“快期”软件设置“测试和代理”中的行情IP地址 双击合约文件列表可打开分时图 TestPythonApi可以调用DataCollectServer收集的行情数据(给定合约和时间段) 2017.3.11
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值