七大排序算法的Python实现

本文实现了Python中的七种常见排序算法(冒泡排序、选择排序、插入排序、希尔排序、统计排序、快速排序、归并排序),并通过装饰器记录了它们对随机数组的排序时间。同时,给出了与Java执行相同逻辑的排序算法在相同数据规模下的时间消耗对比,展示了不同语言和算法的效率差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天使用 Python 实现了一遍七种常见的排序算法。

import random, time

# 生成随机数组
def generate_random_array(size, lrange, rrange):
    return [random.randint(lrange, rrange) for i in range(size)]

# 判断数组是否顺序有序
def is_order_asc(arr):
    for i in range(len(arr) - 1):
        if arr[i] > arr[i + 1]:
            return False
    return True

# 排序算法装饰器
def sort(name):
    def decoration(sort_func):
        def wrapper(*dargs, **dkw):
            start_time = time.time()
            sort_func(*dargs, **dkw)
            if is_order_asc(*dargs):
                print(name + ':数组排序所需时间为:' + str((time.time() - start_time) * 1000) + '毫秒')
            else:
                print(name + ':数组排序失败')
        return wrapper
    return decoration


@sort('冒泡排序')
def bubble_sort(arr):
    length = len(arr)
    for i in range(length - 1):
        for j in range(length - 1):
            if arr[j + 1] < arr[j]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]

@sort('选择排序')
def select_sort(arr):
    for i in range(len(arr) - 1):
        min = i
        for j in range(i + 1,len(arr)):
            if arr[j] < arr[min]:
                min = j
        arr[min], arr[i] = arr[i], arr[min]

@sort('插入排序')
def insert_sort(arr):
    for i in range(1, len(arr)):
        insert_value = arr[i]
        for j in range(i, -1, -1):
            if arr[j - 1] <= insert_value:
                break
            arr[j] = arr[j - 1]
        arr[j] = insert_value

@sort('希尔排序')
def shell_sort(arr):
    h = 1
    while h * 3 + 1 < len(arr):
        h = h * 3 + 1
    while h > 0:
        for i in range(h, len(arr)):
            insert_value = arr[i]
            for j in range(i, -1, -h):
                if (arr[j - h] <= insert_value):
                    break
                arr[j] = arr[j - h]
            arr[j] = insert_value
        h = int((h - 1) / 3)

@sort('统计排序')
def count_sort(arr):
    min_value = arr[0]
    max_value = arr[0]
    for i in range(1, len(arr)):
        if arr[i] > max_value:
            max_value = arr[i]
        elif arr[i] < min_value:
            min_value = arr[i]
        else:
            pass
    count = [0 for i in range(max_value - min_value + 1)]
    for i in arr:
        count[i - min_value] += 1
    index = 0
    for i in range(len(count)):
        for j in range(count[i]):
            arr[index] = i + min_value
            index += 1

@sort('快速排序')
def quick_sort(arr):
    quick(arr, 0, len(arr) - 1)

def quick(arr, start, end):
    if start >= end:
        return
    pivot_index = partition(arr, start, end)
    quick(arr, start, pivot_index - 1)
    quick(arr, pivot_index + 1, end)

def partition(arr, start, end):
    pivot = arr[start]
    mark = start
    for i in range(start + 1, end + 1):
        if arr[i] <= pivot:
            mark += 1
            arr[i], arr[mark] = arr[mark], arr[i]
    arr[start], arr[mark] = arr[mark], arr[start]
    return mark

@sort('归并排序')
def merge_sort(arr):
    merge_sort2(arr, 0, len(arr) - 1)

def merge_sort2(arr, start, end):
    if start >= end:
        return
    middle = int((end - start) / 2) + start
    merge_sort2(arr, start, middle)
    merge_sort2(arr, middle + 1, end)
    merge(arr, start, middle, end)

def merge(arr, start, middle, end):
    copy = [arr[i] for i in range(start, end + 1)]
    left = start
    right = middle + 1
    index = start
    while left <= middle and right <= end:
        if copy[left - start] <= copy[right - start]:
            arr[index] = copy[left - start]
            left+=1
        else:
            arr[index] = copy[right - start]
            right+=1
        index+=1
    while left <= middle:
        arr[index] = copy[left - start]
        left+=1
        index+=1
    while right <= end:
        arr[index] = copy[right - start]
        right+=1
        index+=1

if __name__ == '__main__':
    bubble_sort(generate_random_array(10000, 0, 1000000))
    select_sort(generate_random_array(10000, 0, 1000000))
    insert_sort(generate_random_array(10000, 0, 1000000))
    shell_sort(generate_random_array(10000, 0, 1000000))
    count_sort(generate_random_array(10000, 50, 100))
    quick_sort(generate_random_array(10000, 0, 1000000))
    merge_sort(generate_random_array(10000, 0, 1000000))

最后附上一份 JavaPython 执行同样的排序逻辑的消耗时间对比。

  • 数据规模为 10000
  • 时间单位为毫秒
算法JavaPython
冒泡排序17913996
选择排序463955
插入排序154074
希尔排序363
统计排序12
快速排序323
归并排序352
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值