Flink Table Api

1.导入需要的依赖

 <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.11</artifactId>
            <version>1.7.2</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.11</artifactId>
            <version>1.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table_2.11</artifactId>
            <version>1.7.0</version>
        </dependency>
    </dependencies>

2.编写代码

2.1这是基于stream的回溯流

package org.zsw.flinktable

import org.apache.flink.streaming.api.scala._
import org.apache.flink.table.api.{Table, TableEnvironment}
import org.apache.flink.types.Row

/**
 * @description:
 * @author: zsw
 * @date: Created in 2020/4/7 15:36
 * @modified By:
 */
object Flink_Table_execise01 {

  def main(args: Array[String]): Unit = {

    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)

    val tableEnv = TableEnvironment.getTableEnvironment(env)

    val dataStream: DataStream[User] = env.fromElements(
      User("xiaoming", "english", 90),
      User("xiaoming", "math", 80),
      User("xiaohong", "math", 98),
      User("xiaohong", "english", 82)
    )

    tableEnv.registerDataStream("t_user",dataStream)

    val table: Table = tableEnv.sqlQuery("select * from t_user")
//      //5.统计学生各科总分。
    val userClazzSumScore: Table = tableEnv.sqlQuery("select clazz,sum(score) as sumScore from t_user group by clazz")

    //6.统计学生平均分
    val userAvgScore: Table = tableEnv.sqlQuery("select name,avg(score) as sumScore from t_user group by name")

    //7.查询出english最分的学生姓名
//回溯流不支持order by 所以使用双表联查
//    val maxEnglisg: Table = tableEnv.sqlQuery("select name,clazz,score from t_user where clazz = 'english' order by score desc limit 1")
    val maxEnglisg: Table = tableEnv.sqlQuery("select * from t_user u1 left join (select clazz,max(score) as maxScore  from t_user group by clazz having clazz = 'english') u2 on u1.clazz = u2.clazz where u1.score = u2.maxScore")

    //8.  查询出学生姓名及总分
    val userNameSumScore: Table = tableEnv.sqlQuery("select name,sum(score) as sumScore from t_user group by name")

    val tableValue: DataStream[(Boolean, Row)] = tableEnv.toRetractStream[Row](userClazzSumScore)
    tableValue.print()
    env.execute()

  }

}

case  class User(name:String,clazz:String,score:Int)

输出结果

(true,english,90)
(true,math,80)
(false,math,80)
(true,math,178)
(false,english,90)
(true,english,172)

解释*

因为前两条数据不一致,当第一条数据进入时为true,表示添加,当相同的key再次进入时,会删除掉已存在的key兵进行聚合处理,false表示删除

2.2这是基于批处理的无回溯流\

package org.zsw.flinktable

import org.apache.flink.api.scala._
import org.apache.flink.table.api.{Table, TableEnvironment}
import org.apache.flink.types.Row

/**
 * @description:
 * @author: zsw
 * @date: Created in 2020/4/7 17:37
 * @modified By:
 */
object Flink_Table_execise02 {

  def main(args: Array[String]): Unit = {

    val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)
    val tableEnv = TableEnvironment.getTableEnvironment(env)


    val dataSet: DataSet[User] = env.fromElements(
      User("xiaoming", "english", 90),
      User("xiaoming", "math", 80),
      User("xiaohong", "math", 98),
      User("xiaohong", "english", 82)
    )


//    注册表
    tableEnv.registerDataSet("t_user",dataSet)

    //      //5.统计学生各科总分
    val userClazzSumScore: Table = tableEnv.sqlQuery("select clazz,sum(score) as sumScore from t_user group by clazz")

    //6.统计学生平均分。
    val userAvgScore: Table = tableEnv.sqlQuery("select name,avg(score) as sumScore from t_user group by name")

    //7.查询出english最分的学生姓名。
    val maxEnglisg: Table = tableEnv.sqlQuery("select * from t_user where clazz = 'english' order by score desc limit 1")

    //8.  查询出学生姓名及总分
    val userNameSumScore: Table = tableEnv.sqlQuery("select name,sum(score) as sumScore from t_user group by name")

    tableEnv.toDataSet[Row](userNameSumScore).print()

  }

}

第一章 整体介绍 2 1.1 什么是 Table APIFlink SQL 2 1.2 需要引入的依赖 2 1.3 两种 planner(old & blink)的区别 4 第二章 API 调用 5 2.1 基本程序结构 5 2.2 创建表环境 5 2.3 在 Catalog 中注册表 7 2.3.1 表(Table)的概念 7 2.3.2 连接到文件系统(Csv 格式) 7 2.3.3 连接到 Kafka 8 2.4 表的查询 9 2.4.1 Table API 的调用 9 2.4.2 SQL 查询 10 2.5 将 DataStream 转换成表 11 2.5.1 代码表达 11 2.5.2 数据类型与 Table schema 的对应 12 2.6. 创建临时视图(Temporary View) 12 2.7. 输出表 14 2.7.1 输出到文件 14 2.7.2 更新模式(Update Mode) 15 2.7.3 输出到 Kafka 16 2.7.4 输出到 ElasticSearch 16 2.7.5 输出到 MySql 17 2.8 将表转换成 DataStream 18 2.9 Query 的解释和执行 20 1. 优化查询计划 20 2. 解释成 DataStream 或者 DataSet 程序 20 第三章 流处理中的特殊概念 20 3.1 流处理和关系代数(表,及 SQL)的区别 21 3.2 动态表(Dynamic Tables) 21 3.3 流式持续查询的过程 21 3.3.1 将流转换成表(Table) 22 3.3.2 持续查询(Continuous Query) 23 3.3.3 将动态表转换成流 23 3.4 时间特性 25 3.4.1 处理时间(Processing Time) 25 3.4.2 事件时间(Event Time) 27 第四章 窗口(Windows) 30 4.1 分组窗口(Group Windows) 30 4.1.1 滚动窗口 31 4.1.2 滑动窗口 32 4.1.3 会话窗口 32 4.2 Over Windows 33 1) 无界的 over window 33 2) 有界的 over window 34 4.3 SQL 中窗口的定义 34 4.3.1 Group Windows 34 4.3.2 Over Windows 35 4.4 代码练习(以分组滚动窗口为例) 36 第五章 函数(Functions) 38 5.1 系统内置函数 38 5.2 UDF 40 5.2.1 注册用户自定义函数 UDF 40 5.2.2 标量函数(Scalar Functions) 40 5.2.3 表函数(Table Functions) 42 5.2.4 聚合函数(Aggregate Functions) 45 5.2.5 表聚合函数(Table Aggregate Functions) 47
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值