问题描述:
小蓝有一个超大的仓库,可以摆放很多货物。
现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、宽、高。
小蓝希望所有的货物最终摆成一个大的长方体。即在长、宽、高的方向上分别堆 L、W、H 的货物,满足 n = L×W×H。
给定 n,请问有多少种堆放货物的方案满足要求。
举例:
当 n =4 时,有以下 6 种方案:1×1×4、1×2×2、1×4×1、2×1×2、2 × 2 × 1、4 × 1 × 1
问:
当 n = 2021041820210418 (注意有 16 位数字)时,总共有多少种方案?
思路:
- 由于 L、W、H 的乘积为 n ,因此 L、W、H肯定是n的因数。故不用从 1 列举到 n ,只需要找出所有 n 的因数即可。
- 使得 L、W、H 分别取到 n 的所有因数,当 L×W×H = n 时满足条件,标记加一。
解:
#include<stdio.h>
int main()
{
long long n=2021041820210418;
long long i,j,k;
const int N=1e5+10;
long long a[N];
long long x=0;
long long count=0;
//循环求n的因数,存入数组a[]
for(i=1;i*i<=n;i++)
{
if(n%i==0)
{
a[x]=i;
x++;
if(i!=n/i)
{
a[x]=n/i; //n/i也是n的因数
x++;
}
}
}
//从n的因数中找到乘积为n的三个数
for(i=0;i<x;i++)
{
for(j=0;j<x;j++)
{
for(k=0;k<x;k++)
{
if(a[i]*a[j]*a[k]==n)
{
count++;
}
}
}
}
printf("%lld",count);
return 0;
}