小鼠2021
码龄5年
关注
提问 私信
  • 博客:80,888
    80,888
    总访问量
  • 90
    原创
  • 1,711,850
    排名
  • 12
    粉丝
  • 0
    铁粉

个人简介:heloo

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2019-06-20
博客简介:

qq_45279570的博客

查看详细资料
个人成就
  • 获得26次点赞
  • 内容获得2次评论
  • 获得160次收藏
  • 代码片获得193次分享
创作历程
  • 1篇
    2022年
  • 54篇
    2021年
  • 35篇
    2020年
成就勋章
TA的专栏
  • linux
    16篇
  • python
    2篇
  • 概率论
  • opencv
    36篇
  • 线性代数
    1篇
  • numpy
    2篇
  • C++
    13篇
  • C语言
    17篇
  • 数据结构
    3篇
  • git系列
    3篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉目标检测机器学习深度学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

关于执行sh ./xxx.sh时出现:Syntax error: “(” unexpected 的处理方法

产生Syntax error: “(” unexpected 的原因bash and dashBash是许多Linux平台的内定Shell,除bash外,还有许多传统UNIX上用的Shell,像tcsh、csh、ash、bsh、ksh等等。GNU/Linux 操作系统中的 /bin/sh 本是 bash的符号链接,但鉴于 bash 过于复杂,有人把 bash 从 NetBSD 移植到 Linux 并更名为 dash 并将 /bin/sh 指向它,以获得更快的脚本执行速度。Dash Shell 比 B
原创
发布博客 2022.03.27 ·
3093 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

pandas.get_dummies()

参考博客1参考博客2one hot 编码形式和定义one hot 编码,其为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都有独立的寄存器位,并且在任意时候只有一位有效。这些特征值并不是连续的,而是离散的,无序的。通常我们需要对其进行特征数字化。特征数字化性别特征:[“男”,“女”]按照N位状态寄存器来对N个状态进行编码的原理,咱们处理后应该是这样的(这里只有两个特征,所以N=2):男 → 10 女 → 01国家特征:[“中国”,"美国,“法国”](N=3)
原创
发布博客 2021.11.23 ·
709 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

sklearn.prepocessing.LabelEncoder()

参考博客1参考博客2函数作用将不同的类别进行编码函数的使用使用LabelEncoder()对数据集编码weather = ['sunny','windy','cloudy','rainy','sunny']en = sklearn.prepocessing.LabelEncoder()en = en.fit(['sunny','windy','cloudy','rainy'])weather = en.transform(weather)# weather = [2 3 0 1 2]
原创
发布博客 2021.11.23 ·
1398 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

cv::HoughLinesP()&CV::HoughLines()&cv::HoughCircles()

函数作用cv::HoughLinesP()和CV::HoughLines():检测直线cv::HoughCircles():检测圆函数原型void HoughLinesP(InputArray image, // 源图像,需为8位的单通道二进制图像 OutputArray lines, // 每一条线由具有四个元素的矢量(x_1,y_1, x_2, y_2) double rho, // double类型的rho, 以像素为单位的距离精度一般为1 double
原创
发布博客 2021.09.20 ·
382 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

cv::boundingRect()& cv::minAraeRect() & cv::minEnclosingCircle()

函数作用boundingRect()得到包覆此轮廓的最小正矩形。minAreaRect()得到包覆轮廓的最小斜矩形。minEnclosingCircle()得到包覆此轮廓的最小圆形。函数原型Rect boundingRect(InputArray points)RotatedRect minAreaRect(InputArray points)void minEnclosingCircle(InputArray points, Point2f& center,
原创
发布博客 2021.09.20 ·
664 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cv::contourArea()

函数作用计算轮廓区域面积函数原型double contourArea(InputArray contour, bool oriented = false)// oriented方向:默认为false,表示取面积的绝对值// oriented = true:面积值会按照contour顺逆时针的不同出现正值或者负值...
原创
发布博客 2021.09.20 ·
1263 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

cv::findContours()

函数作用检测轮廓函数原型findContours( InputOutputArray image, // 输入图像,一般为二值图或者经过Canny()等处理过的图像 OutputArrayOfArrays contours, // 轮廓集合,类型为:vector<vector<Point>> OutputArray hierarchy, // 继承关系,类型为:vector<Vec4i>
原创
发布博客 2021.09.20 ·
546 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cv.Laplacian()

函数作用Laplacian卷积函数。函数原型void Laplacian(InputArray src, OuntputArray dst, int ddpth // 输出矩阵数据类型 int ksize=1,// 拉普拉斯核类型 double scale=1,// 比例系数 double delta=0,// 平移系数 int borderType=BORDER_DEFAULT // 边界扩充
原创
发布博客 2021.09.13 ·
711 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

边缘检测——Laplacian算子

Laplacian原理Laplacian卷积核或者:还有其他一些形式:
原创
发布博客 2021.09.13 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

边缘检测——Canny边缘检测

Canny边缘检测步骤图像I分别与Sobel_x和Sobel_y做卷积,利用平方和开方求得到边缘强度。计算梯度方向对每个位置进行非极大值抑制处理。再对结果进行双阈值的滞后阈值处理。函数原型void Canny(InputArray img, OutputArray edges, double threshhold1, double threshold2, int apertureSize=3, bool L2
原创
发布博客 2021.09.13 ·
561 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

边缘检测——Scharr算子

Scharr算子Scharr算子的优缺点与Prewiit算子相比,对灰度变化较为敏感。卷积核不可分离
原创
发布博客 2021.09.13 ·
435 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

边缘检测——Sobel算子

Sobel算子和可分离性利用n=2时高斯卷积算子展开式的系数可作为非归一化的高斯平滑算子,把Prewitt算子中的非归一化均值平滑算子替换,即得到Sobel算子。
原创
发布博客 2021.09.13 ·
233 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

边缘检测——Prewitt算子

垂直水平方向垂直水平方向的Prewitt算子是可分离的卷积核。45°、135°方向
原创
发布博客 2021.09.13 ·
1864 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

边缘检测——Roberts算子

Roberts算子对图像噪声具有较高的敏感性。有两种形式:加粗部分为锚点位置。当需要反映45°、135°对角线方向变化率:反映垂直和水平方向边缘:
原创
发布博客 2021.09.13 ·
851 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cv::integral()

函数作用图像的积分。函数原型void integral( InputArray src, OutputArray sum, int sdepth = -1 );/* src.size() -> (H,W) sum.size() -> (H+1,W+1) 该函数会在src的上和左边补零,为了方便使用。*/
原创
发布博客 2021.09.12 ·
287 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

形态学处理——顶帽变换和底帽变换

顶帽变换(Top-hat)Top-hat定义为图像减去开运算结果开运算可以消除暗背景下的较亮区域,用原图减去开运算结果就可以得到原图中灰度较亮的区域,又称为白顶帽变换。还可以校正不均匀光照。底帽变换闭运算减去原图像闭运算可以删除亮度较高背景下的较暗区域,则再减去原图像就可以得到原图中灰度较暗的区域,又称为黑底帽变换。函数原型开运算、闭运算、白顶帽运算、黑底帽运算 结构元:getStructuringElement(shape,kSize[,anchor]) shape:
原创
发布博客 2021.09.12 ·
4699 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

形态学处理——开运算和闭运算

开运算操作先腐蚀后膨胀的过程称为开运算。开运算操作可以消除暗背景下的较亮区域。闭运算操作先膨胀后腐蚀的过程称为闭运算。闭运算可以消除亮背景下的较暗区域函数原型 结构元:getStructuringElement(shape,kSize[,anchor]) shape: MORPH_RECT:矩形结构元 MORPH_ELLIPSEM:椭圆形结构元 MORPH_CROSS:十字型结构元morphologyEx(src,op,element[,dst[,anchor[,iterati
原创
发布博客 2021.09.12 ·
653 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

形态学处理——膨胀

膨胀操作膨胀是取每一个位置领域内的最大值。如此,输出图像的总体亮度要大于输入图像,图像中较亮物体的尺寸增大,较暗物体的尺寸会变小。函数原型结构元:getStructuringElement(shape,kSize[,anchor]) shape: MORPH_RECT:矩形结构元 MORPH_ELLIPSEM:椭圆形结构元 MORPH_CROSS:十字型结构元dilate(src,element[,dst[,anchor[,iterations[,bord
原创
发布博客 2021.09.12 ·
289 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

形态学处理——腐蚀

腐蚀操作腐蚀是取每一个位置的领域内的最小值作为该位置的输出灰度值。函数原型// 结构元:getStructuringElement(shape,kSize[,anchor])// shape:// MORPH_RECT:矩形结构元// MORPH_ELLIPSEM:椭圆形结构元// MORPH_CROSS:十字型结构元erode(src,element[,dst[,anchor[,iterations[,bordertype[,borderValue]]]]])//
原创
发布博客 2021.09.12 ·
215 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cv.converScaleAbs()

函数说明void cv::converScaleAbs(src,dst,double alpha = 1, double beta = 0)// dst = saturate_cast<CV_8UC>(src * alpha + beta)实例arr = np.array([123,12])arr = cv.convertScaleAbs(arr,arr,3.0)print(arr) # => [[255],[36]]'''cv.convertScaleAbs(arr,
原创
发布博客 2021.09.12 ·
241 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多