数据仓库为什么要分层?
-
把复杂的任务分解成多层来完成,每层只处理简单任务,方便定位问题
-
规范数据分层,通过中间层数据减少重复计算,增加一次计算结果的复用性
-
隔离原始数据,不论是数据的异常还是数据的敏感性,使真实数据与统计数据解耦
什么是维度建模?
维度建模是专门用于分析型数据库、数据仓库、数据集市建模的方法。
以事实表为中心进行表的组织,主要面向业务,其中事实表会有多个外键与维度表进行关联。简单来说就是按照事实表、维度表来构建数据仓库。
维度建模以分析决策的需求出发构建模型,构建的数据模型为分析需求服务,因此它重点解决用户如何更快速完成分析需求,同时还有较好的大规模复杂查询的响应性能。
分层架构

| 分层 < |
|---|

本文探讨了数据仓库为什么要进行分层处理,强调了分层在问题定位、数据复用和保护原始数据方面的优势。介绍了维度建模的概念,它是针对分析型数据库的一种建模方法,以事实表和维度表为核心,便于业务分析和提高查询性能。此外,还提到了数据仓库分层架构中的窗口函数应用,如rank()、dense_rank()和row_number()等。
最低0.47元/天 解锁文章
443

被折叠的 条评论
为什么被折叠?



