PyTorch学习-多分类问题

输出属于某个类别的概率,希望输出之间有关系,相互影响,即输出一个分布

做一个softmax层,使得输出大于0,和为1
计算公式: P ( y = i ) = e z i ∑ j = 0 k − 1 e z j P(y=i)=\cfrac{e^{z_i}}{\sum_{j=0}^{k-1}{e^{z_j}}} P(y=i)=j=0k1ezjezi

Loss function-Cross Entropy L o s s ( Y ^ , Y ) = − Y l o g Y ^ Loss(\hat{Y},Y)=-Ylog\hat{Y} Loss(Y^,Y)=YlogY^

Torch.nn.CrossEntropyLoss() :包含了softmax和Loss
输入需要长整型张量:LongTensor

例子:

import torch
criterion = torch.nn.CrossEntropyLoss()
Y = torch.LongTensor([2,0,1]) # 输入LongTensor

Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9],
                       [1.1, 0.1, 0.2],
                       [0.2, 2.1, 0.1]])
Y_pred2 = torch.Tensor([[0.8, 0.2, 0.3],
                        [0.2, 0.3, 0.5],
                        [0.2, 0.2, 0.5]])
loss1 = criterion(Y_pred1, Y)
loss2 = criterion(Y_pred2, Y)
print("Batch Loss1 = ", loss1.data, "\nBatch Loss2 = ", loss2.data)

输出:

Batch Loss1 =  tensor(0.4966) 
Batch Loss2 =  tensor(1.2389)

阅读文档理解:
CrossEntropyLoss <==> LogSoftmax + NULLLoss

通道:channel
ransforms.ToTensor()
W × H × C W\times H\times C W×H×C 变为 C × W × H C\times W\times H C×W×H
将0-255变为0-1的浮点数
tansfrms.Normalize:
归一化处理:得到均值mean,和方差std,类似标准正太分布(0-1分布)变换将x变为: x − m e a n s t d \cfrac{x-mean}{std} stdxmean

对MNIST手写数字数据集进行多分类训练,输出10个维度即0-9的概率,选择概率最大值作为预测结果

import torch
from torchvision import transforms # 对输入的输入进行变换
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F # 使用relu()作为激活函数
import torch.optim as optim

batch_size = 64
# 将0-255的数据变为0到1的图像张量,
# 通道:channel
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,),(0.3081, ))
])

train_dataset = datasets.MNIST(root='../dataset/mnist/',
                              train = True, 
                              download = False,
                              transform = transform)
train_loader = DataLoader(train_dataset, 
                         shuffle = True,
                         batch_size = batch_size)

test_dataset = datasets.MNIST(root='../dataset/mnist/',
                            train = False,
                            download = False,
                            transform = transform)
test_loader = DataLoader(test_dataset, 
                        shuffle=False,
                        batch_size = batch_size)
                        
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)
        
    def forward(self, x):
        x = x.view(-1, 784) # -1自动计算N,将(N,1, 28, 28) 变成 (N, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x) # 最后一个不做激活
model = Net()

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.5) # momentum:带冲量的优化算法

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad() # 优化器清零
        
        outputs = model(inputs) # 获得预测值,forward
        loss = criterion(outputs, target) # 获得损失值
        loss.backward() # backward
        optimizer.step() # update
        
        running_loss += loss.item() # 注意加上item:不构成计算图
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f'%(epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad(): # 不需要计算梯度
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim = 1) # 每一行的最大值下标
            total += labels.size(0) # 测试了多少个数据
            correct += (predicted == labels).sum().item() # 计算有多少个预测正确
    print('Accuuracy on test set: %d %%' % (100 * correct / total)) # 输出正确率

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

输出:
计算量有点大,代码可能会跑十几分钟才把十次训练都完成

[1,   300] loss: 2.210
[1,   600] loss: 0.913
[1,   900] loss: 0.411
Accuuracy on test set: 89 %
[2,   300] loss: 0.320
[2,   600] loss: 0.271
[2,   900] loss: 0.226
Accuuracy on test set: 93 %
[3,   300] loss: 0.194
[3,   600] loss: 0.163
[3,   900] loss: 0.160
Accuuracy on test set: 95 %
[4,   300] loss: 0.138
[4,   600] loss: 0.121
[4,   900] loss: 0.112
Accuuracy on test set: 96 %
[5,   300] loss: 0.095
[5,   600] loss: 0.096
[5,   900] loss: 0.095
Accuuracy on test set: 96 %
[6,   300] loss: 0.073
[6,   600] loss: 0.080
[6,   900] loss: 0.073
Accuuracy on test set: 96 %
[7,   300] loss: 0.058
[7,   600] loss: 0.060
[7,   900] loss: 0.066
Accuuracy on test set: 97 %
[8,   300] loss: 0.045
[8,   600] loss: 0.054
[8,   900] loss: 0.050
Accuuracy on test set: 97 %
[9,   300] loss: 0.040
[9,   600] loss: 0.041
[9,   900] loss: 0.040
Accuuracy on test set: 97 %
[10,   300] loss: 0.033
[10,   600] loss: 0.031
[10,   900] loss: 0.034
Accuuracy on test set: 97 %
【课程介绍】       Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 【课程要求】 (1)开发环境:python版本:Python3.7+; torch 版本:1.2.0+; torchvision版本:0.4.0+ (2)开发工具:Pycharm; (3)学员基础:需要一定的Python基础,及深度学习基础; (4)学员收货:掌握最新科技图像分类关键技术; (5)学员资料:内含完整程序源码和数据集; (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 【课程特色】 阵容强大 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 仅跟前沿 基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。 实战为先 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 保障效果 项目实战方向包含了学术届和工业届最前沿技术要点 项目包装简历优化 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 【课程思维导图】 【课程实战案例】
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页