线性MIMO系统的动态解耦--张丹

解耦:寻找合适的控制规律,使输入输出相互关联的多变量系统实现每一个输出仅受相应的一个输入的控制,每个输入也仅能控制一个输出。(动态解耦方法和静态解耦方法)

1、动态解耦

寻找一个输入变换和状态反馈矩阵,使导出的闭环系统传递函数矩阵为对角矩阵

u=-Kx+Lv

x'=(A-BK)x+BLx

y=Cx

传递函数矩阵:

G(s)=C(sI-A+BK)^{-1}BL

基于状态空间的结构特征指数和结构特征向量:

c=\begin{bmatrix} c'_1\\ c'_2\\ ...\\ c'_n \end{bmatrix}

结构特征指数:d_i=u_i;c_iA^kB=0;k=0,1,2,3,...,u_i-1;c_iA^{p_u_i}\neq 0

或者d_i=n-1;c_iA^kB=0;k=0,1,2,3,...,n-1

结构特征向量:E_i=c_iA^{d_i}B

基于传递函数的结构特征指数和结构特征向量

G(s)=\begin{pmatrix} g'_1(s)\\ g'_2(s)\\ ....\\ g'_n(s) \end{pmatrix}

g'_i(s)=[g_{i1}(s) \: g_{i2}(s)\, ...\, g_{ip}(s)]

\sigma _{ij}=g_{ij}(s)分母多项式次数-g_{ij}(s)分子多项式次数

结构特征指数:d_i=min({\sigma{i1},\sigma{i2} ,\, ....,\sigma{ip}})-1

结构特征向量:E_i=\lim_{s\rightarrow\infty }s^{d_i+1}g'_i(s)

怎么求解耦规范型??????

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一夕ξ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值