2020年蓝桥杯C/C++省赛B组 B:既约分数

该程序实现了计算1到2020之间所有既约分数的数量。通过两层循环遍历所有可能的分子和分母组合,并使用欧几里得算法计算它们的最大公约数,若为1,则计数加一。最终输出的计数是2480415,表明有这么多既约分数。

B:既约分数

【问题描述】
如果一个分数的分子和分母的最大公约数是 1,这个分数称为既约分数。
例如,3/4 , 2/5, 1/8 , 1/7 都是既约分数。
请问,有多少个既约分数,分子和分母都是 1 到 2020 之间的整数(包括 1 和 2020)?

分析:由于是填空题,只需要暴力两层for循环遍历就行
代码实现:

#include<iostream>
#include<algorithm>
#include <stdio.h>
#include<stdlib.h>
using namespace std;

//求最大公约数
int gcd(int a, int b){
	return b == 0 ? a : gcd(b, a%b);
}
int main(){
	int i;
	int j;
	int sum = 0;
	for (i = 1; i <= 2020; i++){
		for (j = 1; j <= 2020; j++){
			if (gcd(i, j) == 1)sum++;
		}
	}
	cout << sum << endl;
	system("pause");
	return 0;
}

答案:2480415

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿灰灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值