分治法求最大子列和

本文介绍了如何使用分而治之的策略解决求解整数序列中最大子序列和的问题,对比了逐次遍历方法(O(n²))和分治法(O(NlogN)),展示了C语言中分治法的具体实现,包括MaxSum、centerMaxSum和threeOfMax函数。
摘要由CSDN通过智能技术生成

给定N个整数的序列{ A1, A2, …, AN},其中可能有正数也可能有负数,找出其中连续的一个子数列(不允许空序列),使它们的和尽可能大,如果是负数,则返回0。使用下列函数,完成分治法求最大子列和。

题目如标题,题目用到了分而治之的算法思想,以下是分而治之的定义:

“分而治之”(Divide andConquer)
是一种算法设计思想,它将一个大问题分解成相互独立且相似的子问题,然后递归地解决这些子问题,最后将它们的解合并起来得到原问题的解。这种策略通常包括三个步骤:

分解(Divide): 将原问题分解为若干个规模较小且相互独立的子问题。

解决(Conquer): 递归地解决这些子问题。如果子问题足够小,可以直接求解。

合并(Combine): 将子问题的解合并起来,形成原问题的解。

分而治之的思想常常应用在解决复杂问题的过程中,它可以提高算法的效率。一些著名的算法,如归并排序、快速排序、二分查找等,都是采用了分而治之的策略。这种思想在许多计算机科学和算法领域都有广泛的应用。此题目就是用了分而治之中的二分法,改善了题目的时间复杂度

这是自己大一暑假写的逐次遍历的方法

时间复杂度是O(n²)

#include<stdio.h>
#define MAX 100000
int main()
{
	int i,j,n,maxSum,tempSum,a[MAX];//定义数组大小的新方法,即通过宏定义 
	scanf("%d",&n);
	for(i=0;i<n;i++)
	{
		scanf("%d",&a[i]);
	}
	maxSum=0;
	for(i=0;i<n;i++)
	{
		tempSum=0;//保证每个初始值为0 
		for(j=i;j<n;j++)//循环不止有计数功能,有数组时,一定要注意下标 
			{
				tempSum+=a[j];
				if(tempSum>maxSum)//核心问题:可以算一步,判断一步 
					maxSum=tempSum;
			}
	}
	printf("%d",maxSum);	
		
}

以下是分而治之的方法


T ( N ) =O( N log N )
int MaxSum(int a[],int left,int right);
int threeOfMax(int a1,int a2,int a3);
int centerMaxSum(int a[],int left,int right);

```c


在这里插入图片描述

#include<stdio.h>
#define N 50
int MaxSum(int a[],int left,int right);
int centerMaxSum(int a[],int left,int right);
int threeOfMax(int a1,int a2,int a3);
int main(){
 int n;
 int a[N];
    printf("请设置数组位数n:\n");
 scanf("%d",&n);
 printf("请输入数值:\n");
 for(int i = 0;i<n;i++){
  scanf("%d",&a[i]);
 }
 int left=0;
 int right=n-1; 
 int maxSubSum = MaxSum(a,left,right);
 printf("最大子序列的和为:%d\n",maxSubSum);
 return 0;
} 
 
int MaxSum(int a[],int left,int right){
 int a1,a2,a3,i;
 int MaxLeftSum, MaxRightSum; //存放左右子问题的解
    int MaxLeftBorderSum, MaxRightBorderSum; //存放跨分界线的结果
 
    int LeftBorderSum, RightBorderSum;
 // 递归终止条件 直到分到最后一个元素 
 if(left==right){
   if( a[left] > 0 )
            return a[left];
        else
            return 0;
 }
 int mid = (left+right)/2;
 // 划分左边
 a1 = MaxSum(a,left,mid);
 // 划分右边
 a2 = MaxSum(a,mid+1,right);
 // 求解s3 
    MaxLeftBorderSum = 0;
    LeftBorderSum = 0;
    for( i=mid; i>=left; i-- )   //从中线向左扫描
    {
        LeftBorderSum += a[i];
        if( LeftBorderSum > MaxLeftBorderSum )
            MaxLeftBorderSum = LeftBorderSum;
    } //左边扫描结束
 
    MaxRightBorderSum = 0;
    RightBorderSum = 0;
    for( i=mid+1; i<=right; i++ )   //从中线向右扫描
    {
        RightBorderSum += a[i];
        if( RightBorderSum > MaxRightBorderSum )
            MaxRightBorderSum = RightBorderSum;
    } //右边扫描结束 
    a3 =centerMaxSum(a,left,right);;
    //下面返回"治"的结果
    return threeOfMax( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
 
}
// 求解s3 
int centerMaxSum(int a[],int left,int right){
 int leftSum = 0;
 int rightSum = 0;
    int templeftSum = 0;
 int temprightSum = 0;
 int mid=(left+right)/2;
 for(int i = mid;i>=left;i--){
  templeftSum = templeftSum+a[i];
  if(templeftSum>leftSum)
  leftSum=templeftSum; 
 }
 for(int j = mid+1;j<=right;j++){
  temprightSum = temprightSum+a[j];
  if(temprightSum>rightSum)
  rightSum=temprightSum;
 }
 
 return leftSum+rightSum;
}
 
// 求解最大的子列和 
int threeOfMax(int a1,int a2,int a3){
	int maxSum = a1>a2?a1:a2;
	return maxSum>a3?maxSum:a3;
}

摘自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值