在读《统计学习方法》时看到一个概念:
“生成模型”和“判别模型”:

但是书上的解释太抽象没看懂,去搜了一下发现有两个解释:
解释1:

如图,左边是判别模型,右边是生成模型。
对于判别模型,举个例子:假设是二分类任务,判别模型对于输入X会得到输出Y,Y原来是一个score,score在大于threshold和小于threshold时分别取不同的值。此时Y得到正例(Y_1)和反例(Y_2)分类结果的概率满足:P(Y_1|X_1)+P(Y_2|X_1)=1
而对于生成模型,和判别模型不同的是,生成模型并不会得到一个score然后根据阈值划分结果,而是直接计算每种结果的概率,选择概率最大的作为最终结果。
解释2:
假设有四个samples:

生成模型得到的结果如下:

∑
P
(
x
,
y
)
=
1
\sum P(x,y)=1
∑P(x,y)=1
而判定模型的结果如下:

∑
y
P
(
y
∣
x
)
=
1
\sum_{y} P(y|x)=1
∑yP(y∣x)=1
即生成模型对联合概率分布建模,联合概率和为1;判别模型对边缘概率分布建模,条件概率和为1.
从两张图的结果看来,生成模型的结果是从总体来看的,而判别模型的结果是从局部的角度来看的(条件概率),很明显判别概率的信息要少于生成模型的信息。
最后补充书上关于这两个模型特点的描述:

本文介绍了机器学习中两种重要的模型——生成模型和判别模型。生成模型通过学习数据的联合概率分布,直接计算每个结果的概率,而判别模型则关注条件概率,直接预测类别边界。生成模型提供更多信息,但判别模型在实际应用中可能更高效。两者各有特点,适用于不同的学习任务。
112

被折叠的 条评论
为什么被折叠?



