NLP | 生成模型和判别模型的区别

本文介绍了机器学习中两种重要的模型——生成模型和判别模型。生成模型通过学习数据的联合概率分布,直接计算每个结果的概率,而判别模型则关注条件概率,直接预测类别边界。生成模型提供更多信息,但判别模型在实际应用中可能更高效。两者各有特点,适用于不同的学习任务。
摘要由CSDN通过智能技术生成

在读《统计学习方法》时看到一个概念:
“生成模型”“判别模型”

在这里插入图片描述
但是书上的解释太抽象没看懂,去搜了一下发现有两个解释:

解释1:

请添加图片描述
如图,左边是判别模型,右边是生成模型。

对于判别模型,举个例子:假设是二分类任务,判别模型对于输入X会得到输出Y,Y原来是一个score,score在大于threshold和小于threshold时分别取不同的值。此时Y得到正例(Y_1)和反例(Y_2)分类结果的概率满足:P(Y_1|X_1)+P(Y_2|X_1)=1

而对于生成模型,和判别模型不同的是,生成模型并不会得到一个score然后根据阈值划分结果,而是直接计算每种结果的概率,选择概率最大的作为最终结果。

解释2:

假设有四个samples:
请添加图片描述
生成模型得到的结果如下:
请添加图片描述
∑ P ( x , y ) = 1 \sum P(x,y)=1 P(x,y)=1
而判定模型的结果如下:
请添加图片描述
∑ y P ( y ∣ x ) = 1 \sum_{y} P(y|x)=1 yP(yx)=1

即生成模型对联合概率分布建模,联合概率和为1;判别模型对边缘概率分布建模,条件概率和为1.
从两张图的结果看来,生成模型的结果是从总体来看的,而判别模型的结果是从局部的角度来看的(条件概率),很明显判别概率的信息要少于生成模型的信息。

最后补充书上关于这两个模型特点的描述:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>