规范化深度学习代码仓库的目录结构和文件组织方式,以便于代码的管理、协作和复现性。
一种供参考的目录树结构:
.
├── README.md
├── requirements.txt
├── data/
├── docs/
├── logs/
└── src/
├── configs/
│ └── config.yaml
├── models/
│ └── generator.py
├── results/
├── scripts/
│ ├── run.sh
│ └── run_eval.sh
├── train.py
└── utils/
└── metrics.py
README.md
提供项目的简介和使用说明,通常是用户查看的第一个文件。如项目概述、安装步骤、如何运行代码。
docs/
存放项目的文档文件,解释项目的使用、原理等。
data/
存放数据集或数据相关的代码,数据文件通常不会直接包含在代码仓。
src/
代表“source”文件夹,即源代码文件夹,包含模型定义、数据处理脚本、训练和测试代码等,主要的程序都在这个文件下,直接运行相应的程序即可。
- tests/: 存放测试代码,如test.py、test_utils.py。
- models/:存放模型,如ResNet.py、Transformer.py。
- train.py:模型训练文件。
scripts/
存放独立的脚本文件,解放劳动力,直接运行shell即可。如存放
- 数据预处理脚本
- 模型训练脚本
- 模型测试或评估脚本
- 批量运行多个任务的自动化脚本
configs/
存放项目的配置文件,不是实际的源代码。通过配置文件,用户可以不修改代码而灵活调整模型和训练的参数。
- 超参数配置:如学习率、批量大小、训练轮数等。
- 数据路径配置:数据集的存储位置、训练和验证集的路径等。
- 其他环境配置:如硬件配置(GPU/CPU选择)、随机种子设置等。
- 配置文件通常以 YAML(.yaml 或 .yml)、JSON(.json) 格式编写,便于修改和扩展,且能在不同环境中快速适应。
logs/
存放训练和测试过程中生成的日志信息:
- 训练日志、验证日志
- 运行时的标准输出、错误日志
- TensorBoard等
checkpoints/
存储模型训练过程中的检查点,通常用于保存中间模型参数或最优模型。如.pth、.ckpt 等模型参数文件。
requirements.txt或environment.yml
列出项目的依赖项和库。
results/
保存模型训练和评估的结果,包括图像、性能指标等,如
- 可视化结果(如生成的图片、预测结果)
- 性能指标文件(如 .csv 文件或图表)