深度学习仓库代码结构认识

规范化深度学习代码仓库的目录结构和文件组织方式,以便于代码的管理、协作和复现性。

一种供参考的目录树结构:

.
├── README.md
├── requirements.txt
├── data/
├── docs/
├── logs/
└── src/
    ├── configs/
    │   └── config.yaml
    ├── models/
    │   └── generator.py
    ├── results/
    ├── scripts/
    │   ├── run.sh
    │   └── run_eval.sh
    ├── train.py
    └── utils/
        └── metrics.py

README.md

提供项目的简介和使用说明,通常是用户查看的第一个文件。如项目概述、安装步骤、如何运行代码。

docs/

存放项目的文档文件,解释项目的使用、原理等。

data/

存放数据集或数据相关的代码,数据文件通常不会直接包含在代码仓。

src/

代表“source”文件夹,即源代码文件夹,包含模型定义、数据处理脚本、训练和测试代码等,主要的程序都在这个文件下,直接运行相应的程序即可。

  • tests/: 存放测试代码,如test.py、test_utils.py。
  • models/:存放模型,如ResNet.py、Transformer.py。
  • train.py:模型训练文件。

scripts/

存放独立的脚本文件,解放劳动力,直接运行shell即可。如存放

  • 数据预处理脚本
  • 模型训练脚本
  • 模型测试或评估脚本
  • 批量运行多个任务的自动化脚本

configs/

存放项目的配置文件,不是实际的源代码。通过配置文件,用户可以不修改代码而灵活调整模型和训练的参数。

  • 超参数配置:如学习率、批量大小、训练轮数等。
  • 数据路径配置:数据集的存储位置、训练和验证集的路径等。
  • 其他环境配置:如硬件配置(GPU/CPU选择)、随机种子设置等。
  • 配置文件通常以 YAML(.yaml 或 .yml)、JSON(.json) 格式编写,便于修改和扩展,且能在不同环境中快速适应。

logs/

存放训练和测试过程中生成的日志信息:

  • 训练日志、验证日志
  • 运行时的标准输出、错误日志
  • TensorBoard等

checkpoints/

存储模型训练过程中的检查点,通常用于保存中间模型参数或最优模型。如.pth、.ckpt 等模型参数文件。

requirements.txt或environment.yml

列出项目的依赖项和库。

results/

保存模型训练和评估的结果,包括图像、性能指标等,如

  • 可视化结果(如生成的图片、预测结果)
  • 性能指标文件(如 .csv 文件或图表)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值